HOME





Superpattern
In the mathematical study of permutations and permutation patterns, a superpattern or universal permutation is a permutation that contains all of the patterns of a given length. More specifically, a ''k''-superpattern contains all possible patterns of length ''k''. Definitions and example If π is a permutation of length ''n'', represented as a sequence of the numbers from 1 to ''n'' in some order, and ''s'' = ''s''1, ''s''2, ..., ''s''''k'' is a subsequence of π of length ''k'', then ''s'' corresponds to a unique ''pattern'', a permutation of length ''k'' whose elements are in the same order as ''s''. That is, for each pair ''i'' and ''j'' of indexes, the ''i''-th element of the pattern for ''s'' should be less than the ''j''-th element if and only if the ''i''-th element of ''s'' is less than the ''j''-th element. Equivalently, the pattern is order-isomorphic to the subsequence. For instance, if π is the permutation 25314, then it has ten subsequences of length three, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Permutation Pattern
In combinatorial mathematics and theoretical computer science, a (classical) permutation pattern is a sub-permutation of a longer permutation. Any permutation may be written in one-line notation as a sequence of entries representing the result of applying the permutation to the sequence 123...; for instance the sequence 213 represents the permutation on three elements that swaps elements 1 and 2. If π and σ are two permutations represented in this way (these variable names are standard for permutations and are unrelated to the number pi), then π is said to ''contain'' σ as a ''pattern'' if some subsequence of the entries of π has the same relative order as all of the entries of σ. For instance, permutation π contains the pattern 213 whenever π has three entries ''x'', ''y'', and ''z'' that appear within π in the order ''x''...''y''...''z'' but whose values are ordered as ''y'' < ''x'' < ''z'', the same as the ordering of the values in the permutation 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Superpermutation
In combinatorial mathematics, a superpermutation on ''n'' symbols is a string that contains each permutation of ''n'' symbols as a substring. While trivial superpermutations can simply be made up of every permutation concatenated together, superpermutations can also be shorter (except for the trivial case of ''n'' = 1) because overlap is allowed. For instance, in the case of ''n'' = 2, the superpermutation 1221 contains all possible permutations (12 and 21), but the shorter string 121 also contains both permutations. It has been shown that for 1 ≤ ''n'' ≤ 5, the smallest superpermutation on ''n'' symbols has length 1! + 2! + … + ''n''! . The first four smallest superpermutations have respective lengths 1, 3, 9, and 33, forming the strings 1, 121, 123121321, and 123412314231243121342132413214321. However, for ''n'' = 5, there are several smallest superpermutations having the length 153. One such superpermutation is shown below, while another of the same length can be obtaine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Arratia
Richard Alejandro Arratia is a mathematician noted for his work in combinatorics and probability theory. Contributions Arratia developed the ideas of interlace polynomials with Béla Bollobás and Gregory Sorkin,. found an equivalent formulation of the Stanley–Wilf conjecture as the convergence of a limit, and was the first to investigate the lengths of superpatterns of permutations. He has also written highly cited papers on the Chen–Stein method on distances between probability distributions,.. on random walks with exclusion,. and on sequence alignment... He is a coauthor of the book ''Logarithmic Combinatorial Structures: A Probabilistic Approach''.. Education and employment Arratia earned his Ph.D. in 1979 from the University of Wisconsin–Madison under the supervision of David Griffeath. He is currently a professor of mathematics at the University of Southern California The University of Southern California (USC, SC, or Southern Cal) is a Private university, priv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first meaning is the six permutations (orderings) of the set : written as tuples, they are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Anagrams of a word whose letters are all different are also permutations: the letters are already ordered in the original word, and the anagram reorders them. The study of permutations of finite sets is an important topic in combinatorics and group theory. Permutations are used in almost every branch of mathematics and in many other fields of science. In computer science, they are used for analyzing sorting algorithms; in quantum physics, for describing states of particles; and in biology, for describing RNA sequences. The number of permutations of distinct objects is  factorial, us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order Isomorphism
In the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be considered to be "essentially the same" in the sense that either of the orders can be obtained from the other just by renaming of elements. Two strictly weaker notions that relate to order isomorphisms are order embeddings and Galois connections. The idea of isomorphism can be understood for finite orders in terms of Hasse diagrams. Two finite orders are isomorphic exactly when a single Hasse diagram ( up to relabeling of its elements) expresses them both, in other words when every Hasse diagram of either can be converted to a Hasse diagram of the other by simply relabeling the vertices. Definition Formally, given two posets (S,\le_S) and (T,\le_T), an order isomorphism from (S,\le_S) to (T,\le_T) is a bijective function f from S to T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Electronic Journal Of Combinatorics
The ''Electronic Journal of Combinatorics'' is a peer-reviewed open access scientific journal covering research in combinatorial mathematics. The journal was established in 1994 by Herbert Wilf (University of Pennsylvania) and Neil Calkin (Georgia Institute of Technology). The Electronic Journal of Combinatorics is a founding member of the Free Journal Network. According to the ''Journal Citation Reports'', the journal had a 2017 impact factor of 0.762. Editors-in-chief Current The current editors-in-chief at ''Electronic Journal of Combinatorics'' are: * Maria Axenovich, Karlsruhe Institute of Technology, Germany * Miklós Bóna, University of Florida, United States * Julia Böttcher, London School of Economics, United Kingdom * Richard A. Brualdi, University of Wisconsin, Madison, United States * Zdeněk Dvořák, Charles University, Czech Republic * Nikolaos Fountoulakis, University of Birmingham, United Kingdom * Eric Fusy, CNRS/LIX, École Polytechnique, France * Feli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lexicographic Ordering
In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a totally ordered set. There are several variants and generalizations of the lexicographical ordering. One variant applies to sequences of different lengths by comparing the lengths of the sequences before considering their elements. Another variant, widely used in combinatorics, orders subsets of a given finite set by assigning a total order to the finite set, and converting subsets into increasing sequences, to which the lexicographical order is applied. A generalization defines an order on an ''n''-ary Cartesian product of partially ordered sets; this order is a total order if and only if all factors of the Cartesian product are totally ordered. Definition The words in a lexicon (the set of words used in some language) have a conven ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stirling's Approximation
In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of n. It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre. One way of stating the approximation involves the logarithm of the factorial: \ln(n!) = n\ln n - n +O(\ln n), where the big O notation means that, for all sufficiently large values of n, the difference between \ln(n!) and n\ln n-n will be at most proportional to the logarithm of n. In computer science applications such as the worst-case lower bound for comparison sorting, it is convenient to instead use the binary logarithm, giving the equivalent form \log_2 (n!) = n\log_2 n - n\log_2 e +O(\log_2 n). The error term in either base can be expressed more precisely as \tfrac12\log(2\pi n)+O(\tfrac1n), corresponding to an approximate formula for the factorial itself, n! \sim \sqr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

E (mathematical Constant)
The number is a mathematical constant approximately equal to 2.71828 that is the base of a logarithm, base of the natural logarithm and exponential function. It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted \gamma. Alternatively, can be called Napier's constant after John Napier. The Swiss mathematician Jacob Bernoulli discovered the constant while studying compound interest. The number is of great importance in mathematics, alongside 0, 1, Pi, , and . All five appear in one formulation of Euler's identity e^+1=0 and play important and recurring roles across mathematics. Like the constant , is Irrational number, irrational, meaning that it cannot be represented as a ratio of integers, and moreover it is Transcendental number, transcendental, meaning that it is not a root of any non-zero polynomial with rational coefficie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTAEditorial board of JCTB
Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. In 2020, most of the editorial board of ''JCTA'' resigned to form a new,

Annals Of Combinatorics
''Annals of Combinatorics'' is a quarterly peer-reviewed scientific journal covering research in combinatorics. It was established in 1997 by William Chen and is published by Birkhäuser. The journal publishes articles in combinatorics and related areas with a focus on algebraic combinatorics, analytic combinatorics, graph theory, and matroid theory. Until December 2019, the journal was edited by George Andrews, William Chen, and Peter Paule. The current editors-in-chief are Frédérique Bassino, Kolja Knauer, and Matjaž Konvalinka. Abstracting and indexing The journal is abstracted and indexed in *MathSciNet, *Science Citation Index Expanded, *Scopus, and *ZbMATH Open. According to the ''Journal Citation Reports'', the journal has a 2022 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Im ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




American Mathematical Monthly
''The American Mathematical Monthly'' is a peer-reviewed scientific journal of mathematics. It was established by Benjamin Finkel in 1894 and is published by Taylor & Francis on behalf of the Mathematical Association of America. It is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. The editor-in-chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The editor-in-chief heads all departments of the organization and is held accoun ... is Vadim Ponomarenko ( San Diego State University). The journal gives the Lester R. Ford Award annually to "authors of articles of expository excellence" published in the journal. Editors-in-chief The following persons are or have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]