Superconducting Magnet
A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings. They are used in Magnetic resonance imaging, MRI instruments in hospitals, and in scientific equipment such as Nuclear magnetic resonance, NMR spectrometers, mass spectrometers, Fusion power, fusion reactors and particle accelerators. They are also used for levitation, guidance and propulsion in a SCMaglev, magnetic levitation (maglev) railway system being constructed in Japan. Construction Cooling During operation, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
20T Superconducting Magnet
T, or t, is the twentieth letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''tee'' (pronounced ), plural ''tees''. It is derived from the Semitic Taw š¤ of the Phoenician and Paleo-Hebrew script (Aramaic and Hebrew Taw ×Ŗ/š”/, Syriac Taw ܬ, and Arabic ŲŖ TÄŹ¼) via the Greek letter Ļ (tau). In English, it is most commonly used to represent the voiceless alveolar plosive, a sound it also denotes in the International Phonetic Alphabet. It is the most commonly used consonant and the second-most commonly used letter in English-language texts. History '' Taw'' was the last letter of the Western Semitic and Hebrew alphabets. The sound value of Semitic ''Taw'', the Greek alphabet TĪ±Ļ (''Tau''), Old Italic and Latin T has remained fairly constant, representing in each of these, and it has also kept its original basic shape in most of these alphabets. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dewar Flask
A vacuum flask (also known as a Dewar flask, Dewar bottle or thermos) is an insulating storage vessel that slows the speed at which its contents change in temperature. It greatly lengthens the time over which its contents remain hotter or cooler than the flask's surroundings by trying to be as adiabatic as possible. Invented by James Dewar in 1892, the vacuum flask consists of two flasks, placed one within the other and joined at the neck. The gap between the two flasks is partially evacuated of air, creating a near-vacuum which significantly reduces heat transfer by conduction or convection. When used to hold cold liquids, this also virtually eliminates condensation on the outside of the flask. Vacuum flasks are used domestically to keep contents inside hot or cold for extended periods of time. They are also used for thermal cooking. Vacuum flasks are also used for many purposes in industry. History The vacuum flask was designed and invented by Scottish scientist ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
High-temperature Superconductors
High-temperature superconductivity (high-c or HTS) is superconductivity in materials with a critical temperature (the temperature below which the material behaves as a superconductor) above , the boiling point of liquid nitrogen. They are "high-temperature" only relative to previously known superconductors, which function only closer to absolute zero. The first high-temperature superconductor was discovered in 1986 by IBM researchers Georg Bednorz and K. Alex Müller. Although the critical temperature is around , this material was modified by Ching-Wu Chu to make the first high-temperature superconductor with critical temperature . Bednorz and Müller were awarded the Nobel Prize in Physics in 1987 "for their important break-through in the discovery of superconductivity in ceramic materials". Most high-c materials are type-II superconductors. The major advantage of high-temperature superconductors is that they can be cooled using liquid nitrogen, in contrast to previously k ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vanadiumāgallium
Vanadiumāgallium (V3Ga) is a superconducting alloy of vanadium and gallium. It is often used for the high field insert coils of superconducting electromagnets. Vanadiumāgallium tape is used in the highest field magnets (magnetic fields of ). The structure of the superconducting A15 phase of is similar to that of the more common . In conditions where the magnetic field is higher than and the temperature is higher than , and see use. The main property of that makes it so useful is that it can be used in magnetic fields up to about , while can only be used in fields up to about . The high field characteristics can be improved by doping with high-Z elements such as Nb, Ta, Sn, Pt and Pb. Physical properties has an A15 phase, which makes it extremely brittle. One must be extremely cautious not to over-bend the wire when handling it. Superconducting properties * Critical temperature (''T''c): * Upper critical field (''H''c2): over . Fabrication of superconduc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field Strength
In physics, field strength refers to a value in a vector-valued field (e.g., in volts per meter, V/m, for an electric field ''E''). For example, an electromagnetic field has both electric field strength and magnetic field strength. Field strength is a common term referring to a '' vector'' quantity. However, the word 'strength' may lead to confusion as it might be referring only to the magnitude of that vector. For both gravitational field strength and for electric field strength, The Institute of Physics glossary states "this glossary avoids that term because it might be confused with the magnitude of the ravitational or electricfield". As an application, in radio frequency telecommunications Telecommunication, often used in its plural form or abbreviated as telecom, is the transmission of information over a distance using electronic means, typically through cables, radio waves, or other communication technologies. These means of ..., the signal strength excit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Superconductivity
Superconductivity is a set of physical properties observed in superconductors: materials where Electrical resistance and conductance, electrical resistance vanishes and Magnetic field, magnetic fields are expelled from the material. Unlike an ordinary metallic Electrical conductor, conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic Phase transition, critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source. The superconductivity phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. Like ferromagnetism and Atomic spectral line, atomic spectral lines, superconductivity is a phenomenon which can only be explained by quantum mechanics. It is characterized by the Meissner effect, the complete cancellation of the magnetic field in the interior of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Niobiumātin
Niobiumātin is an intermetallic compound of niobium (Nb) and tin (Sn), used industrially as a type-II superconductor. This intermetallic compound has a simple structure: A3B. It is more expensive than niobiumātitanium (NbTi), but remains superconducting up to a magnetic flux density of , compared to a limit of roughly 15 T for NbTi. Nb3Sn was discovered to be a superconductor in 1954. The material's ability to support high currents and magnetic fields was discovered in 1961 and started the era of large-scale applications of superconductivity. The critical temperature is . Application temperatures are commonly around , the boiling point of liquid helium at atmospheric pressure. In April 2008 a record non-copper current density was claimed of 2,643 A mmā2 at 12 T and 4.2 K. History Nb3Sn was discovered to be a superconductor in 1954, one year after the discovery of V3Si, the first example of an A3B superconductor. In 1961 it was discovered tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Niobiumātitanium
Niobiumātitanium (Nb-Ti) is a ductile alloy of niobium and titanium, used industrially as a type II superconductor wire for superconducting magnets, normally as Nb-Ti fibres in an aluminium or copper matrix. Its critical temperature is about 10 kelvins. The high critical magnetic field and high critical supercurrent density of Nb-Ti was discovered in 1962 at Atomics International by T.Ā G. Berlincourt and R.Ā R. Hake. Nb-Ti alloys are notable for their easy workability and affordability, distinguishing them from other superconducting materials. Nb-Ti alloys have a maximal critical magnetic field of about 15 teslas and, thus, are suitable for fabricating supermagnets capable of generating magnetic fields of up to about 10 teslas. For stronger magnetic fields, higher performance superconductors, such as niobiumātin, are commonly used, but these are more difficult to fabricate and more expensive to produce. The global superconductivity market was valued at around five billion ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Upper Critical Field
For a given temperature, the critical field refers to the maximum magnetic field strength below which a material remains superconducting. Superconductivity is characterized both by perfect conductivity (zero resistance) and by the complete expulsion of magnetic fields (the Meissner effect). Changes in either temperature or magnetic flux density can cause the phase transition between normal and superconducting states.High Temperature Superconductivity, Jeffrey W. Lynn Editor, Springer-Verlag (1990) The highest temperature under which the superconducting state is seen is known as the critical temperature. At that temperature even the weakest external magnetic field will destroy the superconducting state, so the strength of the critical field is zero. As temperature decreases, the critical field increases generally to a maximum at absolute zero. For a type-I superconductor the discontinuity in heat capacity seen at the superconducting transition is generally related to the slope of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type-II Superconductor
In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the formation of magnetic field vortices with an applied external magnetic field. This occurs above a certain critical field strength ''Hc1''. The vortex density increases with increasing field strength. At a higher critical field ''Hc2'', superconductivity is destroyed. Type-II superconductors do not exhibit a complete Meissner effect. History In 1935, J.N. Rjabinin and Lev Shubnikov experimentally discovered the type-II superconductors. In 1950, the theory of the two types of superconductors was further developed by Lev Landau and Vitaly Ginzburg in their paper on GinzburgāLandau theory. In their argument, a type-I superconductor had positive free energy of the superconductor-normal metal boundary. Ginzburg and Landau pointed out the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pulse Tube Refrigerator
The pulse tube refrigerator (PTR) or pulse tube cryocooler is a developing technology that emerged largely in the early 1980s with a series of other innovations in the broader field of thermoacoustics. In contrast with other cryocoolers (e.g. applications of the Stirling engine#Stirling cryocoolers, Stirling cryocooler and cryocooler#GM-refrigerators, GM-refrigerators), this cryocooler can be made without moving parts in the low temperature part of the device, making the cooler suitable for a wide variety of applications. Uses Pulse tube cryocoolers are used in niche industrial applications such as semiconductor fabrication and superconducting radio-frequency circuits. They are also used in military applications such as for the cooling of infrared sensors. In research, PTRs are often used as precoolers of dilution refrigerators. They are also being developed for cooling of astronomical detectors where liquid cryogens are typically used, such as the Atacama Cosmology Telescope or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cryocooler
A cryocooler is a refrigerator designed to reach cryogenic temperatures (below 120 K, -153 °C, -243.4 °F). The term is most often used for smaller systems, typically table-top size, with input powers less than about 20 kW. Some can have input powers as low as 2–3 W. Large systems, such as those used for cooling the superconducting magnets in particle accelerators are more often called cryogenic refrigerators. Their input powers can be as high as 1 MW. In most cases cryocoolers use a cryogenic fluid as the working substance and employ moving parts to cycle the fluid around a thermodynamic cycle. The fluid is typically compressed at room temperature, precooled in a heat exchanger, then expanded at some low temperature. The returning low-pressure fluid passes through the heat exchanger to precool the high-pressure fluid before entering the compressor intake. The cycle is then repeated. __TOC__ Ideal heat exchangers and regenerators Heat exchangers are important componen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |