Summability
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series :1 + \frac + \frac + \frac + \frac + \cdots =\sum_^\infty\frac. The divergence of the harmonic series was proven by the medieval mathematician Nicole Oresme. In specialized mathematical contexts, values can be objectively assigned to certain series whose sequences of partial sums diverge, in order to make meaning of the divergence of the series. A ''summability method'' or ''summation method'' is a partial function from the set of series to values. For example, Cesàro summation assigns Grandi's divergent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alfred Tauber
Alfred Tauber (5 November 1866 – 26 July 1942) was a Hungarian-born Austrian mathematician, known for his contribution to mathematical analysis and to the theory of functions of a complex variable: he is the eponym of an important class of theorems with applications ranging from mathematical and harmonic analysis to number theory. He was murdered in the Theresienstadt concentration camp. Life and academic career Born in Pressburg, Kingdom of Hungary, Austrian Empire (now Bratislava, Slovakia), he began studying mathematics at Vienna University in 1884, obtained his Ph.D. in 1889,. and his habilitation in 1891. Starting from 1892, he worked as chief mathematician at the Phönix insurance company until 1908, when he became an a.o. professor at the University of Vienna, though, already from 1901, he had been honorary professor at TU Vienna and director of its insurance mathematics chair.. In 1933, he was awarded the Grand Decoration of Honour in Silver for Services to the Repub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinite Series
In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures (such as in combinatorics) through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance. For a long time, the idea that such a potentially infinite summation could produce a finite result was considered paradoxical. This paradox was resolved using the concept of a limit during the 17th century. Zeno's paradox of Achilles and the tortoise illustrates this counterintuitive property of infinite sums: Achilles runs after a tortoise, but when he reaches the position of the tortoise at the beginni ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cesàro Summation
In mathematical analysis, Cesàro summation (also known as the Cesàro mean ) assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as ''n'' tends to infinity, of the sequence of arithmetic means of the first ''n'' partial sums of the series. This special case of a matrix summability method is named for the Italian analyst Ernesto Cesàro (1859–1906). The term ''summation'' can be misleading, as some statements and proofs regarding Cesàro summation can be said to implicate the Eilenberg–Mazur swindle. For example, it is commonly applied to Grandi's series with the conclusion that the ''sum'' of that series is 1/2. Definition Let (a_n)_^\infty be a sequence, and let :s_k = a_1 + \cdots + a_k= \sum_^k a_n be its th partial sum. The sequence is called Cesàro summable, with Cesàro sum , if, as tends to infinity, the arithmetic mean of its first ''n'' partial sums tends to : :\lim_ \ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abel's Theorem
In mathematics, Abel's theorem for power series relates a limit of a power series to the sum of its coefficients. It is named after Norwegian mathematician Niels Henrik Abel. Theorem Let the Taylor series G (x) = \sum_^\infty a_k x^k be a power series with real coefficients a_k with radius of convergence 1. Suppose that the series \sum_^\infty a_k converges. Then G(x) is continuous from the left at x = 1, that is, \lim_ G(x) = \sum_^\infty a_k. The same theorem holds for complex power series G(z) = \sum_^\infty a_k z^k, provided that z \to 1 entirely within a single ''Stolz sector'', that is, a region of the open unit disk where , 1-z, \leq M(1-, z, ) for some fixed finite M > 1. Without this restriction, the limit may fail to exist: for example, the power series \sum_ \frac n converges to 0 at z = 1, but is unbounded near any point of the form e^, so the value at z = 1 is not the limit as z tends to 1 in the whole open disk. Note that G(z) is continuous on the real cl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Augustin-Louis Cauchy
Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. He was one of the first to state and rigorously prove theorems of calculus, rejecting the heuristic principle of the generality of algebra of earlier authors. He almost singlehandedly founded complex analysis and the study of permutation groups in abstract algebra. A profound mathematician, Cauchy had a great influence over his contemporaries and successors; Hans Freudenthal stated: "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)." Cauchy was a prolific writer; he wrote approximately eight hundred research articles and five complete textbooks on a variety of topics in the fields of mathematics and mathematical physics. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henri Poincaré
Jules Henri Poincaré ( S: stress final syllable ; 29 April 1854 – 17 July 1912) was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The Last Universalist", since he excelled in all fields of the discipline as it existed during his lifetime. As a mathematician and physicist, he made many original fundamental contributions to pure and applied mathematics, mathematical physics, and celestial mechanics. In his research on the three-body problem, Poincaré became the first person to discover a chaotic deterministic system which laid the foundations of modern chaos theory. He is also considered to be one of the founders of the field of topology. Poincaré made clear the importance of paying attention to the invariance of laws of physics under different transformations, and was the first to present the Lorentz transformations in their modern symmetrical form. Poincaré disc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ernesto Cesàro
__NOTOC__ Ernesto Cesàro (12 March 1859 – 12 September 1906) was an Italian mathematician who worked in the field of differential geometry. He wrote a book, ''Lezioni di geometria intrinseca'' (Naples, 1890), on this topic, in which he also describes fractal, space-filling curves, partly covered by the larger class of de Rham curves, but are still known today in his honor as Cesàro curves. He is known also for his 'averaging' method for the 'Cesàro-summation' of divergent series, known as the Cesàro mean. Biography After a rather disappointing start of his academic career and a journey through Europe - with the most important stop at Liège, where his older brother Giuseppe Raimondo Pio Cesàro was teaching mineralogy at the local university - Ernesto Cesàro graduated from the University of Rome in 1887, while he was already part of the Royal Science Society of Belgium for the numerous works that he had already published. The following year, he obtained a mathematic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ferdinand Georg Frobenius
Ferdinand Georg Frobenius (26 October 1849 – 3 August 1917) was a German mathematician, best known for his contributions to the theory of elliptic functions, differential equations, number theory, and to group theory. He is known for the famous determinantal identities, known as Frobenius–Stickelberger formulae, governing elliptic functions, and for developing the theory of biquadratic forms. He was also the first to introduce the notion of rational approximations of functions (nowadays known as Padé approximants), and gave the first full proof for the Cayley–Hamilton theorem. He also lent his name to certain differential-geometric objects in modern mathematical physics, known as Frobenius manifolds. Biography Ferdinand Georg Frobenius was born on 26 October 1849 in Charlottenburg, a suburb of Berlin from parents Christian Ferdinand Frobenius, a Protestant parson, and Christine Elizabeth Friedrich. He entered the Joachimsthal Gymnasium in 1860 when he was nearly el ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Properties Of Summation Methods
Property is the ownership of land, resources, improvements or other tangible objects, or intellectual property. Property may also refer to: Mathematics * Property (mathematics) Philosophy and science * Property (philosophy), in philosophy and logic, an abstraction characterizing an object * Material properties, properties by which the benefits of one material versus another can be assessed * Chemical property, a material's properties that becomes evident during a chemical reaction *Physical property, any property that is measurable whose value describes a state of a physical system * Semantic property * Thermodynamic properties, in thermodynamics and materials science, intensive and extensive physical properties of substances *Mental property, a property of the mind studied by many sciences and parasciences Computer science * Property (programming), a type of class member in object-oriented programming * .properties, a Java Properties File to store program settings as name-val ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convergent Series
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (a_0, a_1, a_2, \ldots) defines a series that is denoted :S=a_0 +a_1+ a_2 + \cdots=\sum_^\infty a_k. The th partial sum is the sum of the first terms of the sequence; that is, :S_n = \sum_^n a_k. A series is convergent (or converges) if the sequence (S_1, S_2, S_3, \dots) of its partial sums tends to a limit; that means that, when adding one a_k after the other ''in the order given by the indices'', one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if there exists a number \ell such that for every arbitrarily small positive number \varepsilon, there is a (sufficiently large) integer N such that for all n \ge N, :\left , S_n - \ell \right , 1 produce a convergent series: *: ++++++\cdots = . * Alternating the signs of reciprocals of powers of 2 also produces a convergent series: *: -+-+-+\cdo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |