Subanalytic Set
In mathematics, particularly in the subfield of real analytic geometry, a subanalytic set is a set of points (for example in Euclidean space) defined in a way broader than for semianalytic sets (roughly speaking, those satisfying conditions requiring certain real power series to be positive there). Subanalytic sets still have a reasonable local description in terms of submanifold In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly ...s. Formal definitions A subset ''V'' of a given Euclidean space ''E'' is semianalytic if each point has a neighbourhood ''U'' in ''E'' such that the intersection of ''V'' and ''U'' lies in the Boolean algebra of sets generated by subsets defined by inequalities ''f'' > 0, where f is a real analytic function. There is no Tarski–Seidenberg theorem for s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Real Analytic Geometry
Real may refer to: Currencies * Argentine real * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Nature and science * Reality, the state of things as they exist, rather than as they may appear or may be thought to be * Real numbers, the set of rational and irrational numbers (and opposed to imaginary numbers) * The Real, an aspect of human psychic structure Sports Africa * Real Republicans FC (Accra), Ghana * Real Republicans F.C. (Sierra Leone) Central and South America *Club Real Potosí, Bolivia *Municipal Real Mamoré, Bolivia *Associação Esportiva Real, Brazil *Real Noroeste Capixaba Futebol Clube, Brazil * C.D. Real Sociedad, Honduras * Real C.D. España, Honduras *Real Maya, Honduras *Real Club España, Mexico *Real Saltillo Soccer, Mexico * Real Sociedad de Zacatecas, Mexico *Real Estelí Baloncesto, Nicaragua * Real Estelí F.C., Nicaragua *Real Madriz, Nicaragua *Real Garcilaso, Peru Portu ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces'' of any positive integer dimension ''n'', which are called Euclidean ''n''-spaces when one wants to specify their dimension. For ''n'' equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of '' proving'' all properties of the space as theorems, by starting from a few fundamental properties, called '' postulates'', which either were considered as evid ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Power Series
In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a constant called the ''center'' of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center ''c'' is equal to zero, for instance for Maclaurin series. In such cases, the power series takes the simpler form \sum_^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots. The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynom ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Submanifold
In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions. Formal definition In the following we assume all manifolds are differentiable manifolds of class C^r for a fixed r\geq 1, and all morphisms are differentiable of class C^r. Immersed submanifolds An immersed submanifold of a manifold M is the image S of an immersion map f: N\rightarrow M; in general this image will not be a submanifold as a subset, and an immersion map need not even be injective (one-to-one) – it can have self-intersections. More narrowly, one can require that the map f: N\rightarrow M be an injection (one-to-one), in which we call it an injective immersion, and define an immersed submanifold to be the image subset S together with ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Boolean Algebra (structure)
In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution). Every Boolean algebra gives rise to a Boolean ring, and vice versa, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the axioms and theorems of Boolean algebra express the symmetry of the theory described by the duality principle. __TOC__ History The term "Boolean algebra" honors George Boole (1815–1864), a self-educated E ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Real Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if for every x_0 in its domain, its Taylor series about x_0 converges to the function in some neighborhood of x_0 . This is stronger than merely being infinitely differentiable at x_0 , and therefore having a well-defined Taylor series; the Fabius function provides an example of a function that is infinitely differentiable but not analytic. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \cdots in which the coefficients a_0, a_1, \dots are rea ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Tarski–Seidenberg Theorem
In mathematics, the Tarski–Seidenberg theorem states that a set in (''n'' + 1)-dimensional space defined by polynomial equations and inequalities can be projected down onto ''n''-dimensional space, and the resulting set is still definable in terms of polynomial identities and inequalities. The theorem—also known as the Tarski–Seidenberg projection property—is named after Alfred Tarski and Abraham Seidenberg. It implies that quantifier elimination is possible over the reals, that is that every formula constructed from polynomial equations and inequalities by logical connectives (''or''), (''and''), (''not'') and quantifiers (''for all''), (''exists'') is equivalent to a similar formula without quantifiers. An important consequence is the decidability of the theory of real-closed fields. Although the original proof of the theorem was constructive, the resulting algorithm has a computational complexity that is too high for using the method on a co ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Relatively Compact
In mathematics, a relatively compact subspace (or relatively compact subset, or precompact subset) of a topological space is a subset whose closure is compact. Properties Every subset of a compact topological space is relatively compact (since a closed subset of a compact space is compact). And in an arbitrary topological space every subset of a relatively compact set is relatively compact. Every compact subset of a Hausdorff space is relatively compact. In a non-Hausdorff space, such as the particular point topology on an infinite set, the closure of a compact subset is ''not'' necessarily compact; said differently, a compact subset of a non-Hausdorff space is not necessarily relatively compact. Every compact subset of a (possibly non-Hausdorff) topological vector space is complete and relatively compact. In the case of a metric topology, or more generally when sequences may be used to test for compactness, the criterion for relative compactness becomes that any sequence in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Locally Finite Collection
A collection of subsets of a topological space X is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection. In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension. Note that the term locally finite has different meanings in other mathematical fields. Examples and properties A finite collection of subsets of a topological space is locally finite. Infinite collections can also be locally finite: for example, the collection of subsets of \mathbb of the form (n, n+2) for an integer n. A countable collection of subsets need not be locally finite, as shown by the collection of all subsets of \mathbb of the form (-n, n) for a natural number ''n''. Every locally finite collection of sets is point finite, meaning that every point of the space belongs to only f ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Semialgebraic Set
In mathematics, a basic semialgebraic set is a set defined by polynomial equalities and polynomial inequalities, and a semialgebraic set is a finite union of basic semialgebraic sets. A semialgebraic function is a function with a semialgebraic graph. Such sets and functions are mainly studied in real algebraic geometry which is the appropriate framework for algebraic geometry over the real numbers. Definition Let \mathbb be a real closed field (For example \mathbb could be the field of real numbers \mathbb). A subset S of \mathbb^n is a ''semialgebraic set'' if it is a finite union of sets defined by polynomial equalities of the form \ and of sets defined by polynomial inequalities of the form \. Properties Similarly to algebraic subvarieties, finite unions and intersections of semialgebraic sets are still semialgebraic sets. Furthermore, unlike subvarieties, the complement of a semialgebraic set is again semialgebraic. Finally, and most importantly, the Tarski–Seide ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |