HOME



picture info

Stericated 6-cubes
In six-dimensional geometry, a stericated 6-cube is a convex uniform 6-polytope, constructed as a sterication (4th order truncation) of the regular 6-cube. There are 8 unique sterications for the 6-cube with permutations of truncations, cantellations, and runcinations. Stericated 6-cube Alternate names * Small cellated hexeract (Acronym: scox) (Jonathan Bowers) Images Steritruncated 6-cube Alternate names * Cellirhombated hexeract (Acronym: catax) (Jonathan Bowers) Images Stericantellated 6-cube Alternate names * Cellirhombated hexeract (Acronym: crax) (Jonathan Bowers) Images Stericantitruncated 6-cube Alternate names * Celligreatorhombated hexeract (Acronym: cagorx) (Jonathan Bowers) Images Steriruncinated 6-cube Alternate names * Celliprismated hexeract (Acronym: copox) (Jonathan Bowers) Images Steriruncitruncated 6-cube Alternate names * Celliprismatotruncated hexeract (Acronym: captix) (Jonathan Bowers) Images ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

6-cube T0
In geometry, a 6-cube is a six-dimensional hypercube with 64 Vertex (geometry), vertices, 192 Edge (geometry), edges, 240 square Face (geometry), faces, 160 cubic Cell (mathematics), cells, 60 tesseract 4-faces, and 12 5-cube 5-faces. It has Schläfli symbol , being composed of 3 5-cubes around each 4-face. It can be called a hexeract, a portmanteau of tesseract (the ''4-cube'') with ''hex'' for six (dimensions) in Greek language, Greek. It can also be called a regular dodeca-6-tope or dodecapeton, being a 6-polytope, 6-dimensional polytope constructed from 12 regular Facet (geometry), facets. Related polytopes It is a part of an infinite family of polytopes, called hypercubes. The Dual polytope, dual of a 6-cube can be called a 6-orthoplex, and is a part of the infinite family of cross-polytopes. It is composed of various 5-cubes, at perpendicular angles on the u-axis, forming coordinates (x,y,z,w,v,u). Applying an ''Alternation (geometry), alternation'' operation, deleting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Harold Scott MacDonald Coxeter
Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century. Coxeter was born in England and educated at the University of Cambridge, with student visits to Princeton University. He worked for 60 years at the University of Toronto in Canada, from 1936 until his retirement in 1996, becoming a full professor there in 1948. His many honours included membership in the Royal Society of Canada, the Royal Society, and the Order of Canada. He was an author of 12 books, including '' The Fifty-Nine Icosahedra'' (1938) and '' Regular Polytopes'' (1947). Many concepts in geometry and group theory are named after him, including the Coxeter graph, Coxeter groups, Coxeter's loxodromic sequence of tangent circles, Coxeter–Dynkin diagrams, and the Todd–Coxeter algorithm. Biography Coxeter was born in Kensington, England, to Harold Samuel Coxete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

6-orthoplex
In geometry, a 6-orthoplex, or 6-cross polytope, is a regular 6-polytope with 12 Vertex (geometry), vertices, 60 Edge (geometry), edges, 160 triangle Face (geometry), faces, 240 tetrahedron Cell (mathematics), cells, 192 5-cell ''4-faces'', and 64 ''5-faces''. It has two constructed forms, the first being regular with Schläfli symbol , and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol or Coxeter symbol 311. It is a part of an infinite family of polytopes, called cross-polytopes or ''orthoplexes''. The dual polytope is the 6-hypercube, or hexeract. Alternate names *Hexacross, derived from combining the family name cross polytope with ''hex'' for six (dimensions) in Greek language, Greek. * Hexacontitetrapeton as a 64-Facet (geometry), facetted 6-polytope. As a configuration This Regular 4-polytope#As configurations, configuration matrix represents the 6-orthoplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others''Mathematical Programming'', by Melvyn W. Jeter (1986) p. 68/ref> (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary. Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. In the influential textbooks of Grünbaum and Ziegler on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avoid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935. Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex Figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines across the connected faces, joining adjacent points around the face. When done, these lines form a complete circuit, i.e. a polygon, around the vertex. This polygon is the vertex figure. More precise formal definitions can vary quite widely, according to circumstance. For example Coxeter (e.g. 1948, 1954) varies his definition as convenient for the current area of discussion. Most of the following definitions of a vertex figure apply equally well to infinite tessellation, tilings or, by extension, to Honeycomb (geometry), space-filling tessellation with polytope Cell (geometry), cells and other higher-dimensional polytopes. As a flat slice Make a slice through the corner of the polyhedron, cutting through all the edges conn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schläfli Symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean space, Euclidean geometry to more than three dimensions and discovered all their convex regular polytopes, including the six that occur in four dimensions. Definition The Schläfli symbol is a Recursive definition, recursive description, starting with \ for a p-sided regular polygon that is Convex set, convex. For example, is an equilateral triangle, is a Square (geometry), square, a convex regular pentagon, etc. Regular star polygons are not convex, and their Schläfli symbols \ contain irreducible fractions p/q, where p is the number of vertices, and q is their turning number. Equivalently, \ is created from the vertices of \, connected every q. For example, \ is a pentagram; \ is a pentagon. A regular pol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sterication
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform Facet (mathematics), facets. Here, "vertex-transitive" means that it has symmetries taking every vertex to every other vertex; the same must also be true within each lower-dimensional face of the polytope. In two dimensions (and for two-dimensional faces of higher-dimensional polytopes) a stronger definition is used: only the regular polygons are considered as uniform, disallowing polygons that alternate between two different lengths of edges. This is a generalization of the older category of semiregular polytope, ''semiregular'' polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures (star polygons) are allowed, which greatly expand the possible solutions. A strict definition requires uniform polytopes to be finite, while a more expansive definition allows uniform honeycombs (2-dimensional uniform tiling, tilings and higher di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform 6-polytope
In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes. The complete set of convex uniform 6-polytopes has not been determined, but most can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter-Dynkin diagrams. Each combination of at least one ring on every connected group of nodes in the diagram produces a uniform 6-polytope. The simplest uniform polypeta are regular polytopes: the 6-simplex , the 6-cube (hexeract) , and the 6-orthoplex (hexacross) . History of discovery * Regular polytopes: (convex faces) ** 1852: Ludwig Schläfli proved in his manuscript ''Theorie der vielfachen Kontinuität'' that there are exactly 3 regular polytopes in 5 or more dimensions. * Convex semiregular polytopes: (Various definitions before Coxeter's uniform category) ** ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Plane
In mathematics, a Coxeter element is an element of an irreducible Coxeter group which is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. This order is known as the Coxeter number. They are named after British-Canadian geometer H.S.M. Coxeter, who introduced the groups in 1934 as abstractions of reflection groups. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order. There are many different ways to define the Coxeter number of an irreducible root system. *The Coxeter number is the order of any Coxeter element;. *The Coxeter number is where is the rank, and is the number of reflections. In the crystallographic case, is half the number of roots; and is the dimension of the corresponding semisimple Lie algebra. *If the h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]