Star Height Problem
The star height problem in formal language theory is the question whether all regular languages can be expressed using regular expressions of limited star height, i.e. with a limited nesting depth of Kleene stars. Specifically, is a nesting depth of one always sufficient? If not, is there an algorithm to determine how many are required? The problem was first introduced by Eggan in 1963. Families of regular languages with unbounded star height The first question was answered in the negative when in 1963, Eggan gave examples of regular languages of star height ''n'' for every ''n''. Here, the star height ''h''(''L'') of a regular language ''L'' is defined as the minimum star height among all regular expressions representing ''L''. The first few languages found by Eggan are described in the following, by means of giving a regular expression for each language: :\begin e_1 &= a_1^* \\ e_2 &= \left(a_1^*a_2^*a_3\right)^*\\ e_3 &= \left(\left(a_1^*a_2^*a_3\right)^*\left(a_4^*a_5^*a_6\r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formal Language Theory
In logic, mathematics, computer science, and linguistics, a formal language is a set of string (computer science), strings whose symbols are taken from a set called "#Definition, alphabet". The alphabet of a formal language consists of symbols that concatenate into strings (also called "words"). Words that belong to a particular formal language are sometimes called Formal language#Definition, ''well-formed words''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar. In computer science, formal languages are used, among others, as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages, in which the words of the language represent concepts that are associated with meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Observable Universe
The observable universe is a Ball (mathematics), spherical region of the universe consisting of all matter that can be observation, observed from Earth; the electromagnetic radiation from these astronomical object, objects has had time to reach the Solar System and Earth since the beginning of the metric expansion of space, cosmological expansion. Assuming the universe is isotropy, isotropic, the distance to the edge of the observable universe is equidistant, the same in every direction. That is, the observable universe is a sphere, spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth. The word ''observable'' in this sense does not refer to the capability of modern technology to detect light or other information from an object, or whether there is anything to be detected. It refers to the physical limit created by the speed of light itself. No signal can travel faster ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Automata (computation)
An automaton (; : automata or automatons) is a relatively self-operating machine, or control mechanism designed to automatically follow a sequence of operations, or respond to predetermined instructions. Some automata, such as bellstrikers in mechanical clocks, are designed to give the illusion to the casual observer that they are operating under their own power or will, like a mechanical robot. The term has long been commonly associated with automated puppets that resemble moving humans or animals, built to impress and/or to entertain people. Animatronics are a modern type of automata with electronics, often used for the portrayal of characters or creatures in films and in theme park attractions. Etymology The word ' is the latinization of the Ancient Greek (), which means "acting of one's own will". It was first used by Homer to describe an automatic door opening, or automatic movement of wheeled tripods. It is more often used to describe non-electronic moving machines, e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Michigan Mathematical Journal
The ''Michigan Mathematical Journal'' (established 1952) is published by the mathematics department at the University of Michigan. An important early editor for the Journal was George Piranian. Historically, the Journal has been published a small number of times in a given year (currently four), in all areas of mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar .... The current Managing Editor is Mircea Mustaţă. References External links * Mathematics journals University of Michigan 1952 establishments in Michigan Academic journals established in 1952 {{math-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Information And Control
''Information and Computation'' is a closed-access computer science journal published by Elsevier (formerly Academic Press). The journal was founded in 1957 under its former name ''Information and Control'' and given its current title in 1987. , the current editor-in-chief is David Peleg. The journal publishes 12 issues a year. History ''Information and Computation'' was founded as ''Information and Control'' in 1957 at the initiative of Leon Brillouin and under the editorship of Leon Brillouin, Colin Cherry and Peter Elias. Murray Eden joined as editor in 1962 and became sole editor-in-chief in 1967. He was succeeded by Albert R. Meyer in 1981, under whose editorship the journal was rebranded ''Information and Computation'' in 1987 in response to the shifted focus of the journal towards theory of computation and away from control theory. In 2020, Albert Mayer was succeeded by David Peleg as editor-in-chief of the journal. Indexing All articles from the ''Information and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deterministic Finite Automaton
In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running through a state sequence uniquely determined by the string. ''Deterministic'' refers to the uniqueness of the computation run. In search of the simplest models to capture finite-state machines, Warren McCulloch and Walter Pitts were among the first researchers to introduce a concept similar to finite automata in 1943. The figure illustrates a deterministic finite automaton using a state diagram. In this example automaton, there are three states: S0, S1, and S2 (denoted graphically by circles). The automaton takes a finite sequence of 0s and 1s as input. For each state, there is a transition arrow leading out to a next state for both 0 an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kleene's Algorithm
In theoretical computer science, in particular in formal language theory, Kleene's algorithm transforms a given nondeterministic finite automaton (NFA) into a regular expression. Together with other conversion algorithms, it establishes the equivalence of several description formats for regular languages. Alternative presentations of the same method include the "elimination method" attributed to Janusz Brzozowski (computer scientist), Brzozowski and Edward J. McCluskey, McCluskey, the algorithm of Robert McNaughton, McNaughton and Hisao Yamada, Yamada, and the use of Arden's lemma. Algorithm description According to Gross and Yellen (2004), Here: sect.2.1, remark R13 on p.65 the algorithm can be traced back to Kleene (1956). A presentation of the algorithm in the case of deterministic finite automata (DFAs) is given in Hopcroft and Ullman (1979). The presentation of the algorithm for NFAs below follows Gross and Yellen (2004). Given a Nondeterministic finite automaton#Formal defini ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Generalized Star Height Problem
The generalized star-height problem in formal language theory is the open question whether all regular languages can be expressed using generalized regular expressions with a limited nesting depth of Kleene stars. Here, generalized regular expressions are defined like regular expressions, but they have a built-in complement operator. For a regular language, its generalized star height is defined as the minimum nesting depth of Kleene stars needed in order to describe the language by means of a generalized regular expression, hence the name of the problem. More specifically, it is an open question whether a nesting depth of more than 1 is required, and if so, whether there is an algorithm to determine the minimum required star height.Sakarovitch (2009) p.171 Regular languages of star-height 0 are also known as star-free languages. The theorem of Schützenberger provides an algebraic characterization of star-free languages by means of aperiodic syntactic monoids. In particular ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
EXPSPACE
In computational complexity theory, is the set of all decision problems solvable by a deterministic Turing machine in exponential space, i.e., in O(2^) space, where p(n) is a polynomial function of n. Some authors restrict p(n) to be a linear function, but most authors instead call the resulting class . If we use a nondeterministic machine instead, we get the class , which is equal to by Savitch's theorem. A decision problem is if it is in , and every problem in has a polynomial-time many-one reduction to it. In other words, there is a polynomial-time algorithm that transforms instances of one to instances of the other with the same answer. problems might be thought of as the hardest problems in . is a strict superset of , , and . It contains and is believed to strictly contain it, but this is unproven. Formal definition In terms of and , :\mathsf = \bigcup_ \mathsf\left(2^\right) = \bigcup_ \mathsf\left(2^\right) Examples of problems Formal languages An examp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nondeterministic Finite Automaton
In automata theory, a finite-state machine is called a deterministic finite automaton (DFA), if * each of its transitions is ''uniquely'' determined by its source state and input symbol, and * reading an input symbol is required for each state transition. A nondeterministic finite automaton (NFA), or nondeterministic finite-state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. Sometimes the term NFA is used in a narrower sense, referring to an NFA that is ''not'' a DFA, but not in this article. Using the subset construction algorithm, each NFA can be translated to an equivalent DFA; i.e., a DFA recognizing the same formal language. Like DFAs, NFAs only recognize regular languages. NFAs were introduced in 1959 by Michael O. Rabin and Dana Scott, who also showed their equivalence to DFAs. NFAs are used in the implementation of regular expressions: Thompson's construction is an algorithm for compiling a regular expression to an NFA that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decimal Notation
The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as ''decimal notation''. A decimal numeral (also often just ''decimal'' or, less correctly, ''decimal number''), refers generally to the notation of a number in the decimal numeral system. Decimals may sometimes be identified by a decimal separator (usually "." or "," as in or ). ''Decimal'' may also refer specifically to the digits after the decimal separator, such as in " is the approximation of to ''two decimals''". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value. The numbers that may be represented in the decimal system are the decimal fractions. That is, fractions of the form , wher ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |