Stable Matching Polytope
In mathematics, economics, and computer science, the stable matching polytope or stable marriage polytope is a convex polytope derived from the solutions to an instance of the stable matching problem. Description The stable matching polytope is the convex hull of the indicator vectors of the stable matchings of the given problem. It has a dimension for each pair of elements that can be matched, and a vertex for each stable matchings. For each vertex, the Cartesian coordinates are one for pairs that are matched in the corresponding matching, and zero for pairs that are not matched. The stable matching polytope has a polynomial number of facets. These include the conventional inequalities describing matchings without the requirement of stability (each coordinate must be between 0 and 1, and for each element to be matched the sum of coordinates for the pairs involving that element must be exactly one), together with inequalities constraining the resulting matching to be stable (for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distributive Lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. Definition As in the case of arbitrary lattices, one can choose to consider a distributive lattice ''L'' either as a structure of order theory or of universal algebra. Both views and their mutual correspondence are discussed in the article on lattices. In the present situation, the algebraic description appears to be more convenient. A lattice (''L'',∨,∧) is distributive if the following additional identity holds for all ''x'', ''y'', and ''z'' in ''L'': : ''x'' ∧ (''y'' ∨ ''z'') = (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z''). Viewing lattices as part ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Mathematics (journal)
''Discrete Mathematics'' is a biweekly peer-reviewed scientific journal in the broad area of discrete mathematics, combinatorics, graph theory, and their applications. It was established in 1971 and is published by North-Holland Publishing Company. It publishes both short notes, full length contributions, as well as survey articles. In addition, the journal publishes a number of special issues each year dedicated to a particular topic. Although originally it published articles in French and German, it now allows only English language articles. The editor-in-chief is Douglas West ( University of Illinois, Urbana). History The journal was established in 1971. The very first article it published was written by Paul Erdős, who went on to publish a total of 84 papers in the journal. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 0.87. Notable publications * The 1972 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of The ACM
The ''Journal of the ACM'' is a peer-reviewed scientific journal covering computer science in general, especially theoretical aspects. It is an official journal of the Association for Computing Machinery. Its current editor-in-chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The highest-ranking editor of a publication may also be titled editor, managing ... is Venkatesan Guruswami. The journal was established in 1954 and "computer scientists universally hold the ''Journal of the ACM'' in high esteem". See also * '' Communications of the ACM'' References External links * Publications established in 1954 Computer science journals Association for Computing Machinery academic journals Bimonthly journals English-language journals {{compu-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
European Journal Of Combinatorics
European, or Europeans, or Europeneans, may refer to: In general * ''European'', an adjective referring to something of, from, or related to Europe ** Ethnic groups in Europe ** Demographics of Europe ** European cuisine European cuisine comprises the cuisines of Europe "European Cuisine."European Union ** Citizenship of the European Union ** [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SIAM Journal On Discrete Mathematics
'' SIAM Journal on Discrete Mathematics'' is a peer-reviewed mathematics journal published quarterly by the Society for Industrial and Applied Mathematics (SIAM). The journal includes articles on pure and applied discrete mathematics. It was established in 1988, along with the '' SIAM Journal on Matrix Analysis and Applications'', to replace the '' SIAM Journal on Algebraic and Discrete Methods''. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.57. According to the ''Journal Citation Reports'', the journal has a 2016 impact factor of 0.755. Although its official ISO abbreviation is ''SIAM J. Discrete Math.'', its publisher and contributors frequently use the shorter abbreviation ''SIDMA''. References External links * Combinatorics journals Publications established in 1988 English-language journals Discrete Mathematics Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Transformation
In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line. If is the point set of an affine space, then every affine transformation on can ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distributive Polytope
In the geometry of convex polytopes, a distributive polytope is a convex polytope for which coordinatewise minima and maxima of pairs of points remain within the polytope. For example, this property is true of the unit cube, so the unit cube is a distributive polytope. It is called a distributive polytope because the coordinatewise minimum and coordinatewise maximum operations form the meet and join operations of a continuous distributive lattice on the points of the polytope. Every face of a distributive polytope is itself a distributive polytope. The distributive polytopes all of whose vertex coordinates are 0 or 1 are exactly the order polytopes. See also *Stable matching polytope, a convex polytope that defines a distributive lattice on its points in a different way References {{reflist, refs= {{citation , last1 = Felsner , first1 = Stefan , last2 = Knauer , first2 = Kolja , doi = 10.1016/j.ejc.2010.07.011 , issue = 1 , journal = European Journal of Combinatoric ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order Polytope
In mathematics, the order polytope of a finite partially ordered set is a convex polytope defined from the set. The points of the order polytope are the monotonic functions from the given set to the unit interval, its vertices correspond to the upper sets of the partial order, and its dimension is the number of elements in the partial order. The order polytope is a distributive polytope, meaning that coordinatewise minima and maxima of pairs of its points remain within the polytope. The order polytope of a partial order should be distinguished from the ''linear ordering polytope'', a polytope defined from a number n as the convex hull of indicator vectors of the sets of edges of n-vertex transitive tournaments. Definition and example A partially ordered set is a pair (S,\le) where S is an arbitrary set and \le is a binary relation on pairs of elements of S that is reflexive (for all x\in S, x\le x), antisymmetric (for all x,y\in S with x\ne y at most one of x\le y and y\le x can b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closure Problem
In graph theory and combinatorial optimization, a closure of a directed graph is a set of vertices ''C'', such that no edges leave ''C''. The closure problem is the task of finding the maximum-weight or minimum-weight closure in a vertex-weighted directed graph... It may be solved in polynomial time using a reduction to the maximum flow problem. It may be used to model various application problems of choosing an optimal subset of tasks to perform, with dependencies between pairs of tasks, one example being in open pit mining. Algorithms Condensation The maximum-weight closure of a given graph ''G'' is the same as the complement of the minimum-weight closure on the transpose graph of ''G'', so the two problems are equivalent in computational complexity. If two vertices of the graph belong to the same strongly connected component, they must behave the same as each other with respect to all closures: it is not possible for a closure to contain one vertex without containing the other. F ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Programming
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization). More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine (linear) function defined on this polyhedron. A linear programming algorithm finds a point in the polytope where this function has the smallest (or largest) value if such a point exists. Linear programs are problems that can be expressed in canonical form as : \begin & \text ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gale–Shapley Algorithm
In mathematics, economics, and computer science, the Gale–Shapley algorithm (also known as the deferred acceptance algorithm or propose-and-reject algorithm) is an algorithm for finding a solution to the stable matching problem, named for David Gale and Lloyd Shapley. It takes polynomial time, and the time is linear in the size of the input to the algorithm. It is a truthful mechanism from the point of view of the proposing participants, for whom the solution will always be optimal. Background The stable matching problem, in its most basic form, takes as input equal numbers of two types of participants ( medical students and internships, for example), and an ordering for each participant giving their preference for whom to be matched to among the participants of the other type. A stable matching always exists, and the algorithmic problem solved by the Gale–Shapley algorithm is to find one. A matching is ''not'' stable if: In other words, a matching is stable when there is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |