Spectral Decomposition (Matrix)
{{disambiguation ...
Spectral decomposition is any of several things: * Spectral decomposition for matrix: eigendecomposition of a matrix * Spectral decomposition for linear operator: spectral theorem *Decomposition of spectrum (functional analysis) The spectrum of a linear operator T that operates on a Banach space X (a fundamental concept of functional analysis) consists of all scalars \lambda such that the operator T-\lambda does not have a bounded inverse on X. The spectrum has a standa ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Eigendecomposition Of A Matrix
In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem. Fundamental theory of matrix eigenvectors and eigenvalues A (nonzero) vector of dimension is an eigenvector of a square matrix if it satisfies a linear equation of the form :\mathbf \mathbf = \lambda \mathbf for some scalar . Then is called the eigenvalue corresponding to . Geometrically speaking, the eigenvectors of are the vectors that merely elongates or shrinks, and the amount that they elongate/shrink by is the eigenvalue. The above equation is called the eigenvalue equation or the eigenvalue problem. This yields an equation for the eigenvalues : p\left(\lambda\right) = \d ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Spectral Theorem
In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective. Examples of operators to which the spectral theorem applies are self-adjoint operators or mo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |