Signature (physics)
   HOME





Signature (physics)
In mathematics, the signature of a metric tensor ''g'' (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix of the metric tensor with respect to a basis. In relativistic physics, ''v'' conventionally represents the number of time or virtual dimensions, and ''p'' the number of space or physical dimensions. Alternatively, it can be defined as the dimensions of a maximal positive and null subspace. By Sylvester's law of inertia these numbers do not depend on the choice of basis and thus can be used to classify the metric. It is denoted by three integers , where v is the number of positive eigenvalues, p is the number of negative ones and r is the number of zero eigenvalues of the metric tensor. It can also be denoted implying ''r'' = 0, or as an explicit list of signs of eigenvalues suc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Butterworth–Heinemann
Butterworth–Heinemann is a British publishing company specialised in professional information and learning materials for higher education and professional training, in printed and electronic forms. It was formed in 1990 by the merger of Heinemann Professional Publishing and Butterworths Scientific, both subsidiaries of Reed International. With its earlier constituent companies, the founding dates back to 1923. It has publishing units in Oxford (UK) and Waltham, Massachusetts (United States). As of 2006, it is an imprint of Elsevier. See also *LexisNexis Butterworths LexisNexis is an American data analytics company headquartered in New York, New York. Its products are various databases that are accessed through online portals, including portals for computer-assisted legal research (CALR), newspaper search, ... References External links * Book publishing companies of the United Kingdom Elsevier imprints {{publish-corp-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagonal Matrix
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is \left begin 3 & 0 \\ 0 & 2 \end\right/math>, while an example of a 3×3 diagonal matrix is \left begin 6 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end\right/math>. An identity matrix of any size, or any multiple of it is a diagonal matrix called a ''scalar matrix'', for example, \left begin 0.5 & 0 \\ 0 & 0.5 \end\right/math>. In geometry, a diagonal matrix may be used as a '' scaling matrix'', since matrix multiplication with it results in changing scale (size) and possibly also shape; only a scalar matrix results in uniform change in scale. Definition As stated above, a diagonal matrix is a matrix in which all off-diagonal entries are zero. That is, the matrix with columns and rows is diagonal if \forall i,j \in \, i \ne j \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or can be trivially determined by the context. I_1 = \begin 1 \end ,\ I_2 = \begin 1 & 0 \\ 0 & 1 \end ,\ I_3 = \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end ,\ \dots ,\ I_n = \begin 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end. The term unit matrix has also been widely used, but the term ''identity matrix'' is now standard. The term ''unit matrix'' is ambiguous, because it is also used for a matrix of on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scalar Product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. Not to be confused with scalar multiplication. is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used. It is often called the inner product (or rarely the projection product) of Euclidean space, even though it is not the only inner product that can be defined on Euclidean space (see ''Inner product space'' for more). It should not be confused with the cross product. Algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers. Geometrically, it is the product of the Euclidean magnitudes of the two vectors and the cosine of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Null Space
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. That is, given a linear map between two vector spaces and , the kernel of is the vector space of all elements of such that , where denotes the zero vector in , or more symbolically: \ker(L) = \left\ = L^(\mathbf). Properties The kernel of is a linear subspace of the domain .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in , , and Strang's lectures. In the linear map L : V \to W, two elements of have the same image in if and only if their difference lies in the kernel of , that is, L\left(\mathbf_1\right) = L\left(\mathbf_2\right) \quad \text \quad L\left(\mathbf_1-\mathbf_2\right) = \mathbf. From this, it follows ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symmetric Bilinear Form
In mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a bilinear function B that maps every pair (u,v) of elements of the vector space V to the underlying field such that B(u,v)=B(v,u) for every u and v in V. They are also referred to more briefly as just symmetric forms when "bilinear" is understood. Symmetric bilinear forms on finite-dimensional vector spaces precisely correspond to symmetric matrices given a basis for ''V''. Among bilinear forms, the symmetric ones are important because they are the ones for which the vector space admits a particularly simple kind of basis known as an orthogonal basis (at least when the characteristic of the field is not 2). Given a symmetric bilinear form ''B'', the function is the associated quadratic form on the vector space. Moreover, if the characterist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Linear Group
In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over \R (the set of real numbers) is the group of n\times n invertible matrices of real numbers, and is denoted by \operatorname_n(\R) or \operatorname(n,\R). More generally ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Congruent Matrices
Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In modular arithmetic, having the same remainder when divided by a specified integer **Ramanujan's congruences, congruences for the partition function, , first discovered by Ramanujan in 1919 ** Congruence subgroup, a subgroup defined by congruence conditions on the entries of a matrix group with integer entries ** Congruence of squares, in number theory, a congruence commonly used in integer factorization algorithms * Matrix congruence, an equivalence relation between two matrices * Congruence (manifolds), in the theory of smooth manifolds, the set of integral curves defined by a nonvanishing vector field defined on the manifold * Congruence (general relativity), in general relativity, a congruence in a four-dimensional Lorentzian manifold that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' meaning "equal", and μέτρον ''metron'' meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion. Introduction Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional Euclidean space, two geometric figures are congruent if they are related by an isometry; the isometry that relates them is either a rigid motion (translation or rotati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Multiplicity
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. The e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diagonalizable
In linear algebra, a square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix. That is, if there exists an invertible matrix P and a diagonal matrix D such that . This is equivalent to (Such D are not unique.) This property exists for any linear map: for a finite-dimensional vector space a linear map T:V\to V is called diagonalizable if there exists an ordered basis of V consisting of eigenvectors of T. These definitions are equivalent: if T has a matrix representation A = PDP^ as above, then the column vectors of P form a basis consisting of eigenvectors of and the diagonal entries of D are the corresponding eigenvalues of with respect to this eigenvector basis, T is represented by Diagonalization is the process of finding the above P and and makes many subsequent computations easier. One can raise a diagonal matrix D to a power by simply raising the diagonal entries to that power. The determinant of a diagonal matrix is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]