Sequential Search
In computer science, linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched. A linear search runs in linear time in the worst case, and makes at most comparisons, where is the length of the list. If each element is equally likely to be searched, then linear search has an average case of comparisons, but the average case can be affected if the search probabilities for each element vary. Linear search is rarely practical because other search algorithms and schemes, such as the binary search algorithm and hash tables, allow significantly faster searching for all but short lists. Algorithm A linear search sequentially checks each element of the list until it finds an element that matches the target value. If the algorithm reaches the end of the list, the search terminates unsuccessfully. Basic algorithm Given a list of elements with values o ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Search Algorithm
In computer science, a search algorithm is an algorithm designed to solve a search problem. Search algorithms work to retrieve information stored within particular data structure, or calculated in the Feasible region, search space of a problem domain, with Continuous or discrete variable, either discrete or continuous values. Although Search engine (computing), search engines use search algorithms, they belong to the study of information retrieval, not algorithmics. The appropriate search algorithm to use often depends on the data structure being searched, and may also include prior knowledge about the data. Search algorithms can be made faster or more efficient by specially constructed database structures, such as search trees, hash maps, and database indexes. Search algorithms can be classified based on their mechanism of searching into three types of algorithms: linear, binary, and hashing. Linear search algorithms check every record for the one associated with a target key i ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Sentinel Value
In computer programming, a sentinel value (also referred to as a flag value, trip value, rogue value, signal value, or dummy data) is a special value in the context of an algorithm which uses its presence as a condition of termination, typically in a loop or recursive algorithm. The sentinel value is a form of in-band data that makes it possible to detect the end of the data when no out-of-band data (such as an explicit size indication) is provided. The value should be selected in such a way that it is guaranteed to be distinct from all legal data values since otherwise, the presence of such values would prematurely signal the end of the data (the semipredicate problem). A sentinel value is sometimes known as an " Elephant in Cairo", due to a joke where this is used as a physical sentinel. In safe languages, most sentinel values could be replaced with option types, which enforce explicit handling of the exceptional case. Examples Some examples of common sentinel values and t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Hash Table
In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps Unique key, keys to Value (computer science), values. A hash table uses a hash function to compute an ''index'', also called a ''hash code'', into an array of ''buckets'' or ''slots'', from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. A map implemented by a hash table is called a hash map. Most hash table designs employ an Perfect hash function, imperfect hash function. Hash collision, Hash collisions, where the hash function generates the same index for more than one key, therefore typically must be accommodated in some way. In a well-dimensioned hash table, the average time complexity for each lookup is independent of the number of elements stored in the table. Many hash table designs also ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Ternary Search
A ternary search algorithm is a technique in computer science for finding the minimum or maximum of a unimodal function. The function Assume we are looking for a maximum of f(x) and that we know the maximum lies somewhere between A and B. For the algorithm to be applicable, there must be some value x such that * for all a, b with A \leq a * if f(m_1) = f(m_2), then the search should be conducted in _1; m_2/math>, but this case can be attributed to any of the previous two (in order to simplify the code). Sooner or later the length of the segment will be a little less than a predetermined constant, and the process can be stopped. choice points m_1 and m_2: * m_1 = l + (r - l) / 3 * m_2 = r - (r - l) / 3 ; Run time order : T(n) = T(2n/3) + O(1) = \Theta(\log n) (by the Master Theorem) Recursive algorithm def ternary_search(f, left, right, absolute_precision) -> float: """Left and right are the current bounds; the maximum is between them. """ ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Binary Search
In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array. Binary search runs in Time complexity#Logarithmic time, logarithmic time in the Best, worst and average case, worst case, making O(\log n) comparisons, where n is the number of elements in the array. Binary search is faster than linear search except for small arrays. However, the array must be sorted first to be able to apply binary search. There are specialized data structures designed fo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Search Data Structure
In computer science, a search data structure is any data structure that allows the efficient retrieval of specific items from a set of items, such as a specific record from a database. The simplest, most general, and least efficient search structure is merely an unordered sequential list of all the items. Locating the desired item in such a list, by the linear search method, inevitably requires a number of operations proportional to the number ''n'' of items, in the worst case as well as in the average case. Useful search data structures allow faster retrieval; however, they are limited to queries of some specific kind. Moreover, since the cost of building such structures is at least proportional to ''n'', they only pay off if several queries are to be performed on the same database (or on a database that changes little between queries). Static search structures are designed for answering many queries on a fixed database; dynamic structures also allow insertion, deletion, or m ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Binary Search Algorithm
In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found. If the search ends with the remaining half being empty, the target is not in the array. Binary search runs in logarithmic time in the worst case, making O(\log n) comparisons, where n is the number of elements in the array. Binary search is faster than linear search except for small arrays. However, the array must be sorted first to be able to apply binary search. There are specialized data structures designed for fast searching, such as hash tables, that can be searched ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Sort (computing)
In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important for optimizing the efficiency of other algorithms (such as search and merge algorithms) that require input data to be in sorted lists. Sorting is also often useful for canonicalizing data and for producing human-readable output. Formally, the output of any sorting algorithm must satisfy two conditions: # The output is in monotonic order (each element is no smaller/larger than the previous element, according to the required order). # The output is a permutation (a reordering, yet retaining all of the original elements) of the input. Although some algorithms are designed for sequential access, the highest-performing algorithms assume data is stored in a data structure which allows random access. History and concepts From the beginn ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Amortized Analysis
In computer science, amortized analysis is a method for analyzing a given algorithm's complexity, or how much of a resource, especially time or memory, it takes to execute. The motivation for amortized analysis is that looking at the worst-case run time can be too pessimistic. Instead, amortized analysis averages the running times of operations in a sequence over that sequence. As a conclusion: "Amortized analysis is a useful tool that complements other techniques such as worst-case and average-case analysis." For a given operation of an algorithm, certain situations (e.g., input parametrizations or data structure contents) may imply a significant cost in resources, whereas other situations may not be as costly. The amortized analysis considers both the costly and less costly operations together over the whole sequence of operations. This may include accounting for different types of input, length of the input, and other factors that affect its performance. History Amortize ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Geometric Distribution
In probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: * The probability distribution of the number X of Bernoulli trials needed to get one success, supported on \mathbb = \; * The probability distribution of the number Y=X-1 of failures before the first success, supported on \mathbb_0 = \ . These two different geometric distributions should not be confused with each other. Often, the name ''shifted'' geometric distribution is adopted for the former one (distribution of X); however, to avoid ambiguity, it is considered wise to indicate which is intended, by mentioning the support explicitly. The geometric distribution gives the probability that the first occurrence of success requires k independent trials, each with success probability p. If the probability of success on each trial is p, then the probability that the k-th trial is the first success is :\Pr(X = k) = (1-p)^p for k=1,2,3,4,\dots The above form of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Asymptotic Complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for designing efficient algorithms, it is often fundamental to compare the complexity of a specific algorithm to the complexity of the problem to be solved. Also, in most cases, the only thing that is known about the complexity of a problem is that it is lower than the c ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Subroutine
In computer programming, a function (also procedure, method, subroutine, routine, or subprogram) is a callable unit of software logic that has a well-defined interface and behavior and can be invoked multiple times. Callable units provide a powerful programming tool. The primary purpose is to allow for the decomposition of a large and/or complicated problem into chunks that have relatively low cognitive load and to assign the chunks meaningful names (unless they are anonymous). Judicious application can reduce the cost of developing and maintaining software, while increasing its quality and reliability. Callable units are present at multiple levels of abstraction in the programming environment. For example, a programmer may write a function in source code that is compiled to machine code that implements similar semantics. There is a callable unit in the source code and an associated one in the machine code, but they are different kinds of callable units with different impl ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |