Satter Prize
The Ruth Lyttle Satter Prize in Mathematics, also called the Satter Prize, is one of twenty-one prizes given out by the American Mathematical Society (AMS). It is presented biennially in recognition of an outstanding contribution to mathematics research by a woman in the previous six years. The award was funded in 1990 using a donation from Joan Birman, in memory of her sister, Ruth Lyttle Satter, who worked primarily in biological sciences, and was a proponent for equal opportunities for women in science. First awarded in 1991, the award is intended to "honor [Satter's] commitment to research and to encourage women in science". The winner is selected by the council of the AMS, based on the recommendation of a selection committee. The prize is awarded at the Joint Mathematics Meetings during odd numbered years, and has always carried a modest cash reward. Since 2003, the prize has been United States dollar, $5,000, while from 1997 to 2001, the prize came with $1,200, and $4,000 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
United States Dollar
The United States dollar (Currency symbol, symbol: Dollar sign, $; ISO 4217, currency code: USD) is the official currency of the United States and International use of the U.S. dollar, several other countries. The Coinage Act of 1792 introduced the U.S. dollar at par with the Spanish dollar, Spanish silver dollar, divided it into 100 cent (currency), cents, and authorized the Mint (facility), minting of coins denominated in dollars and cents. U.S. banknotes are issued in the form of Federal Reserve Notes, popularly called greenbacks due to their predominantly green color. The U.S. dollar was originally defined under a bimetallism, bimetallic standard of (0.7734375 troy ounces) fine silver or, from Coinage Act of 1834, 1834, fine gold, or $20.67 per troy ounce. The Gold Standard Act of 1900 linked the dollar solely to gold. From 1934, its equivalence to gold was revised to $35 per troy ounce. In 1971 all links to gold were repealed. The U.S. dollar became an important intern ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
The Wire (Indian Web Publication)
''The Wire'' is an Indian nonprofit news and opinion website. It was founded in 2015 by Siddharth Varadarajan, Sidharth Bhatia, and M. K. Venu. It counts among the news outlets that are independent of the Indian government, and has been subject to several defamation suits by state governments, businessmen, politicians and multinational companies. On 9 May 2025, it was blocked by the Ministry of Electronics and Information Technology under the IT Act for allegedly violating freedom of the press. Its reporting of disinformation in the Meta- Tek Fog fiasco caused it to face scrutiny and backlash until it released a formal apology and admitted to having published the story without verification. History The Wire was founded by Siddharth Varadarajan, after he departed from his position as editor at ''The Hindu''. It began operating on 11 May 2015; Varadarajan worked with Sidharth Bhatia and M. K. Venu who had initially funded the website. Later it was made part of the Foun ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
P-adic Number
In number theory, given a prime number , the -adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; -adic numbers can be written in a form similar to (possibly infinite) decimals, but with digits based on a prime number rather than ten, and extending to the left rather than to the right. For example, comparing the expansion of the rational number \tfrac15 in base vs. the -adic expansion, \begin \tfrac15 &= 0.01210121\ldots \ (\text 3) &&= 0\cdot 3^0 + 0\cdot 3^ + 1\cdot 3^ + 2\cdot 3^ + \cdots \\ mu\tfrac15 &= \dots 121012102 \ \ (\text) &&= \cdots + 2\cdot 3^3 + 1 \cdot 3^2 + 0\cdot3^1 + 2 \cdot 3^0. \end Formally, given a prime number , a -adic number can be defined as a series s=\sum_^\infty a_i p^i = a_k p^k + a_ p^ + a_ p^ + \cdots where is an integer (possibly negative), and each a_i is an integer such that 0\le a_i < p. A -adic integer is a -adic number such that < ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wavelet
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing. For example, a wavelet could be created to have a frequency of middle C and a short duration of roughly one tenth of a second. If this wavelet were to be convolved with a signal created from the recording of a melody, then the resulting signal would be useful for determining when the middle C note appeared in the song. Mathematically, a wavelet correlates with a signal if a portion of the signal is similar. Correlation is at the core of many practical wavelet applications. As a mathematical tool, wavelets can be used to extract information from many kinds of data, including audio signals and images. Sets of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ingrid Daubechies (2005)
Baroness Ingrid Daubechies ( ; ; born 17 August 1954) is a Belgian-American physicist and mathematician. She is best known for her work with wavelets in image compression. Daubechies is recognized for her study of the mathematical methods that enhance image-compression technology. She is a member of the National Academy of Engineering, the National Academy of Sciences and the American Academy of Arts and Sciences. She is a 1992 MacArthur Fellow. She also served on the Mathematical Sciences jury for the Infosys Prize from 2011 to 2013. The name Daubechies is widely associated with the orthogonal Daubechies wavelet and the biorthogonal CDF wavelet. A wavelet from this family of wavelets is now used in the JPEG 2000 standard. Her research involves the use of automatic methods from both mathematics, technology, and biology to extract information from samples such as bones and teeth. She also developed sophisticated image processing techniques used to help establish the authentici ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
3-manifold
In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane (geometry), plane (a tangent plane) to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below. Principles Definition A topological space M is a 3-manifold if it is a second-countable Hausdorff space and if every point in M has a neighbourhood (mathematics), neighbourhood that is homeomorphic to Euclidean 3-space. Mathematical theory of 3-manifolds The topological, Piecewise linear manifold, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dim ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conformal Geometry
In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale. Study of the flat structures is sometimes termed Möbius geometry, and is a type of Klein geometry. Conformal manifolds A conformal manifold is a Riemannian manifold (or pseudo-Riemannian manifold) equipped with an equivalence class of metric tensors, in which two metrics ''g'' and ''h'' are equivalent if and only if :h = \lambda^2 g , where ''λ'' is a real-valued smooth function defined on the manifold and is called the conformal fa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isospectral
In mathematics, two linear operators are called isospectral or cospectral if they have the same spectrum. Roughly speaking, they are supposed to have the same sets of eigenvalues, when those are counted with multiplicity. The theory of isospectral operators is markedly different depending on whether the space is finite or infinite dimensional. In finite-dimensions, one essentially deals with square matrices. In infinite dimensions, the spectrum need not consist solely of isolated eigenvalues. However, the case of a compact operator on a Hilbert space (or Banach space) is still tractable, since the eigenvalues are at most countable with at most a single limit point ''λ'' = 0. The most studied isospectral problem in infinite dimensions is that of the Laplace operator on a domain in R2. Two such domains are called isospectral if their Laplacians are isospectral. The problem of inferring the geometrical properties of a domain from the spectrum of its Laplacian is ofte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectral Geometry
Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry have also been examined. The field concerns itself with two kinds of questions: direct problems and inverse problems. Inverse problems seek to identify features of the geometry from information about the eigenvalues of the Laplacian. One of the earliest results of this kind was due to Hermann Weyl who used David Hilbert's theory of integral equation in 1911 to show that the volume of a bounded domain in Euclidean space can be determined from the asymptotic behavior of the eigenvalues for the Dirichlet boundary value problem of the Laplace operator. This question is usually expressed as " Can one hear the shape of a drum?", the popular phras ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemannian Manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifold, manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them. Formally, a Riemannian metric (or just a metric) on a smooth manifold is a choice of inner product for each tangent space of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport. Any smooth surface in three-dimensional Eucl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partial Differential Equation
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to how is thought of as an unknown number solving, e.g., an algebraic equation like . However, it is usually impossible to write down explicit formulae for solutions of partial differential equations. There is correspondingly a vast amount of modern mathematical and scientific research on methods to numerically approximate solutions of certain partial differential equations using computers. Partial differential equations also occupy a large sector of pure mathematical research, in which the usual questions are, broadly speaking, on the identification of general qualitative features of solutions of various partial differential equations, such as existence, uniqueness, regularity and stability. Among the many open questions are the existence ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sun Yung Alice Chang
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is by far the most important source of energy for life on Earth. The Sun has been an object of veneration in many cultures. It has been a central subject for astronomical research since antiquity. The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years. Its distance from Earth defines the astronomical unit, which is about or about 8 light-minutes. Its diameter is about (), 109 times that of Earth. The Sun's mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. The mass of outer layer of the Sun's atmosphere, its ''photosphere'', consists mostly of hydrogen (~73%) and helium (~25%), with much smaller ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |