RU Camelopardalis
RU Camelopardalis, or RU Cam, is a W Virginis variable (type II Cepheid) in the constellation of Camelopardalis. It is also a Carbon star, which is very unusual for a Cepheid variable. History RU Cam was reported as a new variable star in 1907. It was quickly recognised as one of the Cepheid class of variable stars. The first detailed study of the spectrum of RU Cam showed that it changed during the brightness variations. From partway down the descending branch of the light curve to just after minimum brightness, the spectrum is class R with hydrogen absorption lines. The spectrum then develops hydrogen emission lines. For several days either side of maximum brightness, the spectrum becomes a relatively normal class K. RU Cam remained a somewhat unusual W Virginis variable until 1964, when the relatively regular pulsation of about 1 magnitude almost entirely stopped. Since then the pulsations have varied from cycle to cycle, with amplitudes changing from several t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ru Camelopardalis
RU Camelopardalis, or RU Cam, is a W Virginis variable (type II Cepheid) in the constellation of Camelopardalis. It is also a Carbon star, which is very unusual for a Cepheid variable. History RU Cam was reported as a new variable star in 1907. It was quickly recognised as one of the Cepheid class of variable stars. The first detailed study of the spectrum of RU Cam showed that it changed during the brightness variations. From partway down the descending branch of the light curve to just after minimum brightness, the spectrum is class R with hydrogen absorption lines. The spectrum then develops hydrogen emission lines. For several days either side of maximum brightness, the spectrum becomes a relatively normal class K. RU Cam remained a somewhat unusual W Virginis variable until 1964, when the relatively regular pulsation of about 1 magnitude almost entirely stopped. Since then the pulsations have varied from cycle to cycle, with amplitudes changing from several t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hipparcos Objects
''Hipparcos'' was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions and distances of celestial objects on the sky. This permitted the first high-precision measurements of the luminosity, intrinsic brightnesses, proper motions, and parallaxes of stars, enabling better calculations of their distance and tangential velocity. When combined with radial velocity measurements from spectroscopy, astrophysicists were able to finally measure all six quantities needed to determine the motion of stars. The resulting ''Hipparcos Catalogue'', a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision ''Tycho Catalogue'' of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. ''Hipparcos'' follow-up mission, ''Gaia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carbon Stars
A carbon star (C-type star) is typically an asymptotic giant branch star, a luminous red giant, whose atmosphere contains more carbon than oxygen. The two elements combine in the upper layers of the star, forming carbon monoxide, which consumes most of the oxygen in the atmosphere, leaving carbon atoms free to form other carbon compounds, giving the star a "sooty" atmosphere and a strikingly ruby red appearance. There are also some dwarf and supergiant carbon stars, with the more common giant stars sometimes being called classical carbon stars to distinguish them. In most stars (such as the Sun), the atmosphere is richer in oxygen than carbon. Ordinary stars not exhibiting the characteristics of carbon stars but cool enough to form carbon monoxide are therefore called oxygen-rich stars. Carbon stars have quite distinctive spectral characteristics, and they were first recognized by their spectra by Angelo Secchi in the 1860s, a pioneering time in astronomical spectroscopy. Spe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
W Virginis Variables
W Virginis variables are a subclass of Type II Cepheids which exhibit pulsation periods between 10–20 days, and are of spectral class F6 – K2. They were first recognized as being distinct from classical Cepheids by Walter Baade in 1942, in a study of Cepheids in the Andromeda Galaxy that proposed that stars in that galaxy were of two populations. See also *Low-dimensional chaos in stellar pulsations Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain stellar equilibrium, equilibrium. These fluctuations in stellar radius cause corresponding changes in the stellar luminosity, luminosity o ... References External links * AAVSO Variable Star of the Month. W Virginis: Spring 200PDFHTML {{var-star-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henry Draper Catalogue Objects
Henry may refer to: People and fictional characters * Henry (given name), including lists of people and fictional characters * Henry (surname) * Henry, a stage name of François-Louis Henry (1786–1855), French baritone Arts and entertainment * Henry (2011 film), ''Henry'' (2011 film), a Canadian short film * Henry (2015 film), ''Henry'' (2015 film), a virtual reality film * ''Henry: Portrait of a Serial Killer'', a 1986 American crime film * Henry (comics), ''Henry'' (comics), an American comic strip created in 1932 by Carl Anderson * "Henry", a song by New Riders of the Purple Sage Places Antarctica * Henry Bay, Wilkes Land Australia *Henry River (New South Wales) *Henry River (Western Australia) Canada * Henry Lake (Vancouver Island), British Columbia * Henry Lake (Halifax County), Nova Scotia * Henry Lake (District of Chester), Nova Scotia New Zealand * Lake Henry (New Zealand) * Henry River (New Zealand) United States * Henry, Illinois * Henry, Indiana * Henry, Nebras ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Objects With Variable Star Designations
Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an aim, target, or objective * Object (grammar), a sentence element, such as a direct object or an indirect object Science, technology, and mathematics Computing * 3D model, a representation of a physical object * Object (computer science), a language mechanism for binding data with methods that operate on that data ** Object-orientation (other), in which concepts are represented as objects *** Object-oriented programming (OOP), in which an object is an instance of a class or array ** Object (IBM i), the fundamental unit of data storage in the IBM i operating system * Object file, the output of a compiler or other translator program (also known as "object code") * HTML object element Mathematics * Object (mathematics), an abst ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Instability Strip
The unqualified term instability strip usually refers to a region of the Hertzsprung–Russell diagram largely occupied by several related classes of pulsating variable stars: Delta Scuti variables, SX Phoenicis variables, and rapidly oscillating Ap stars (roAps) near the main sequence; RR Lyrae variables where it intersects the horizontal branch; and the Cepheid variables where it crosses the supergiants. RV Tauri variables are also often considered to lie on the instability strip, occupying the area to the right of the brighter Cepheids (at lower temperatures), since their stellar pulsations are attributed to the same mechanism. Position on the HR diagram The Hertzsprung–Russell diagram plots the real luminosity of stars against their effective temperature (their color, given by the temperature of their photosphere). The instability strip intersects the main sequence, (the prominent diagonal band that runs from the upper left to the lower right) in the region of A an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Blue Loop
In the field of stellar evolution, a blue loop is a stage in the life of an evolved star where it changes from a cool star to a hotter one before cooling again. The name derives from the shape of the evolutionary track on a Hertzsprung–Russell diagram which forms a loop towards the blue (i.e. hotter) side of the diagram, to a place called the blue giant branch. Blue loops can occur for red supergiants, red-giant branch stars, or asymptotic giant branch stars. Some stars may undergo more than one blue loop. Many pulsating variable stars such as Cepheids are blue loop stars. Stars on the horizontal branch are not generally referred to as on a blue loop even though they are temporarily hotter than on the red giant or asymptotic giant branches. Loops occur far too slowly to be observed for individual stars, but are inferred from theory and from the properties and distribution of stars in the H–R diagram. Red giants Most stars on the red-giant branch (RGB) have an inert ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
S-process
The slow neutron-capture process, or ''s''-process, is a series of nuclear reactions, reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The ''s''-process is responsible for the creation (nucleosynthesis) of approximately half the Atomic nucleus, atomic nuclei Heavy metal (chemical element), heavier than iron. In the ''s''-process, a seed nucleus undergoes neutron capture to form an isotope with one higher atomic mass. If the new isotope is stable nuclide, stable, a series of increases in mass can occur, but if it is unstable nucleus, unstable, then beta decay will occur, producing an element of the next higher atomic number. The process is ''slow'' (hence the name) in the sense that there is sufficient time for this radioactive decay to occur before another neutron is captured. A series of these reactions produces stable isotopes by moving along the valley of stability, valley of beta-decay stable isobars in the table of nuclides. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dredge-up
A dredge-up is any one of several stages in the evolution of some stars. By definition, during a ''dredge-up'', a convection zone extends all the way from the star's surface down to the layers of material that have undergone fusion. Consequently, the fusion products are mixed into the outer layers of the star's atmosphere, where they can be seen in stellar spectra. Multiple stages *;''The first dredge-up'': The first dredge-up occurs when a main-sequence star enters the red-giant branch. As a result of the convective mixing, the outer atmosphere will display the spectral signature of hydrogen fusion: The C/ C and C/ N ratios are lowered, and the surface abundances of lithium and beryllium may be reduced. The counter-intuitive existence of lithium-rich red giant stars that have gone through first dredge-up may be explained by scenarios such as mass transfer. *;''The second dredge-up'': The second dredge-up occurs in stars with 4–8 solar masses. When helium fusion co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asymptotic Giant Branch
The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) late in their lives. Observationally, an asymptotic-giant-branch star will appear as a bright red giant with a luminosity ranging up to thousands of times greater than the Sun. Its interior structure is characterized by a central and largely inert core of carbon and oxygen, a shell where helium is undergoing fusion to form carbon (known as helium burning), another shell where hydrogen is undergoing fusion forming helium (known as hydrogen burning), and a very large envelope of material of composition similar to main-sequence stars (except in the case of carbon stars). Stellar evolution When a star exhausts the supply of hydrogen by nuclear fusion processes in its core, the core contracts and its temperature increases, causing the oute ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |