HOME



picture info

Robert Frucht
Robert Wertheimer Frucht (later known as Roberto Frucht) (9 August 1906 – 26 June 1997) was a German-Chilean mathematician; his research specialty was graph theory and the symmetries of graphs. Education and career In 1908, Frucht's family moved from Brünn, Austria-Hungary (now in the Czech Republic), where he was born, to Berlin. Frucht entered the University of Berlin in 1924 with an interest in differential geometry, but switched to group theory under the influence of his doctoral advisor, Issai Schur; he received his Ph.D. in 1931. Unable to find academic employment in Germany due to his Jewish descent, he became an actuary in Trieste, but left Italy in 1938 because of the racial laws that came into effect at that time. He moved to Argentina, where relatives of his wife lived, and attempted to move from there to the United States, but his employment outside academia prevented him from obtaining the necessary visa. At the same time Robert Breusch, another German mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph theory), vertices'' (also called ''nodes'' or ''points'') which are connected by ''Glossary of graph theory terms#edge, edges'' (also called ''arcs'', ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a Set (mathematics), set of vertices (also called nodes or points); * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compositio Mathematica
''Compositio Mathematica'' is a monthly peer-reviewed mathematics journal established by L.E.J. Brouwer in 1935. It is owned by the Foundation Compositio Mathematica, and since 2004 it has been published on behalf of the Foundation by the London Mathematical Society in partnership with Cambridge University Press. According to the ''Journal Citation Reports'', the journal has a 2020 2-year impact factor of 1.456 and a 2020 5-year impact factor of 1.696. The editors-in-chief are Fabrizio Andreatta, David Holmes, Bruno Klingler, and Éric Vasserot. Early history The journal was established by L. E. J. Brouwer in response to his dismissal from ''Mathematische Annalen'' in 1928. An announcement of the new journal was made in a 1934 issue of the ''American Mathematical Monthly''. In 1940, the publication of the journal was suspended due to the German occupation of the Netherlands Despite Dutch neutrality, Nazi Germany German invasion of the Netherlands, invaded the Netherlands ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Graph Theory
The ''Journal of Graph Theory'' is a peer-reviewed mathematics journal specializing in graph theory and related areas, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. It is published by John Wiley & Sons. The journal was established in 1977 by Frank Harary.Frank Harary
a biographical sketch at the ACM site
The are
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zero-symmetric Graph
In the mathematics, mathematical field of graph theory, a zero-symmetric graph is a connected graph in which each vertex has exactly three incident edges and, for each two vertices, there is a unique graph automorphism, symmetry taking one vertex to the other. Such a graph is a vertex-transitive graph but cannot be an edge-transitive graph: the number of symmetries equals the number of vertices, too few to take every edge to every other edge. The name for this class of graphs was coined by R. M. Foster in a 1966 letter to Harold Scott MacDonald Coxeter, H. S. M. Coxeter. In the context of group theory, zero-symmetric graphs are also called graphical regular representations of their symmetry groups.. Examples The smallest zero-symmetric graph is a nonplanar graph with 18 vertices. Its LCF notation is [5,−5]9. Among planar graphs, the truncated cuboctahedral graph, truncated cuboctahedral and truncated icosidodecahedral graphs are also zero-symmetric. These examples are al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harold Scott MacDonald Coxeter
Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century. Coxeter was born in England and educated at the University of Cambridge, with student visits to Princeton University. He worked for 60 years at the University of Toronto in Canada, from 1936 until his retirement in 1996, becoming a full professor there in 1948. His many honours included membership in the Royal Society of Canada, the Royal Society, and the Order of Canada. He was an author of 12 books, including '' The Fifty-Nine Icosahedra'' (1938) and '' Regular Polytopes'' (1947). Many concepts in geometry and group theory are named after him, including the Coxeter graph, Coxeter groups, Coxeter's loxodromic sequence of tangent circles, Coxeter–Dynkin diagrams, and the Todd–Coxeter algorithm. Biography Coxeter was born in Kensington, England, to Harold Samuel Coxete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Joshua Lederberg
Joshua Lederberg (May 23, 1925 – February 2, 2008) was an American molecular biology, molecular biologist known for his work in microbial genetics, artificial intelligence, and the United States space program. He was 33 years old when he won the 1958 Nobel Prize in Physiology or Medicine for discovering that bacteria can mate and exchange genes (bacterial conjugation). He shared the prize with Edward Tatum and George Beadle, who won for their work with genetics. In addition to his contributions to biology, Lederberg did extensive research in artificial intelligence. This included work in the NASA experimental programs seeking life on Mars and the chemistry expert system Dendral. Early life and education Lederberg was born in Montclair, New Jersey, to a Jewish family, son of Esther Goldenbaum Schulman Lederberg and Rabbi Zvi Hirsch Lederberg, in 1925, and moved to Washington Heights, Manhattan as an infant. He had two younger brothers. Lederberg graduated from Stuyvesant High S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian Graph
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for details. Hamiltonian paths and cycles are named after William Rowan Hamilton, who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LCF Notation
In the mathematical field of graph theory, LCF notation or LCF code is a notation devised by Joshua Lederberg, and extended by Harold Scott MacDonald Coxeter, H. S. M. Coxeter and Robert Frucht, for the representation of cubic graphs that contain a Hamiltonian path, Hamiltonian cycle. The cycle itself includes two out of the three adjacencies for each Vertex (graph theory), vertex, and the LCF notation specifies how far along the cycle each vertex's third neighbor is. A single graph may have multiple different representations in LCF notation. Description In a Hamiltonian graph, the vertices can be circular layout, arranged in a cycle, which accounts for two edges per vertex. The third edge from each vertex can then be described by how many positions clockwise (positive) or counter-clockwise (negative) it leads. The basic form of the LCF notation is just the sequence of these numbers of positions, starting from an arbitrarily chosen vertex and written in square brackets. The numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Graph
In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph. Symmetry In 1932, Ronald M. Foster began collecting examples of cubic symmetric graphs, forming the start of the Foster census.. Many well-known individual graphs are cubic and symmetric, including the utility graph, the Petersen graph, the Heawood graph, the Möbius–Kantor graph, the Pappus graph, the Desargues graph, the Nauru graph, the Coxeter graph, the Tutte–Coxeter graph, the Dyck graph, the Foster graph and the Biggs–Smith graph. W. T. Tutte classified the symmetric cubic graphs by the smallest integer number ''s'' such that each two oriented paths of length ''s'' can be mapped to each other by exactly one symmetry of the graph. He showed that ''s'' is at most 5, and provided examples of graphs with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Frucht Graph
In the mathematics, mathematical field of graph theory, the Frucht graph is a cubic graph with 12 Vertex (graph theory), vertices, 18 edges, and no nontrivial graph automorphism, symmetries. It was first described by Robert Frucht in 1949. The Frucht graph is a pancyclic graph, pancyclic, Halin graph with chromatic number 3, chromatic index 3, radius 3, and diameter 4. Like every Halin graph, the Frucht graph is polyhedral graph, polyhedral (planar graph, planar and k-vertex-connected graph, 3-vertex-connected) and Hamiltonian graph, Hamiltonian, with Girth (graph theory), girth 3. Its Glossary_of_graph_theory#Independence, independence number is 5. The Frucht graph can be constructed from the LCF notation: . Algebraic properties The Frucht graph is one of the five smallest cubic graphs possessing only a single graph automorphism, the identity (that is, every vertex can be distinguished topologically from every other vertex). Such graphs are called asymmetric graph, asymmetric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Undirected Graph
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called '' vertices'' (also called ''nodes'' or ''points'') and each of the related pairs of vertices is called an ''edge'' (also called ''link'' or ''line''). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. The edges may be directed or undirected. For example, if the vertices represent people at a party, and there is an edge between two people if they shake hands, then this graph is undirected because any person ''A'' can shake hands with a person ''B'' only if ''B'' also shakes hands with ''A''. In contrast, if an edge from a person ''A'' to a person ''B'' means that ''A'' owes money to ''B'', then this graph is directed, because owing money is not necessarily reciprocated. Gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]