Rickart Space
In mathematics, a Rickart space (after Charles Earl Rickart), also called a basically disconnected space, is a topological space in which open σ-compact subsets have compact open closures. named them after , who showed that Rickart spaces are related to monotone σ-complete C*-algebras in the same way that Stonean spaces are related to AW*-algebras. Rickart spaces are totally disconnected and sub-Stonean space In topology, a sub-Stonean space is a locally compact Hausdorff space such that any two open σ-compact disjoint subsets have disjoint compact closures. Related, an F-space, introduced by , is a completely regular Hausdorff space for which every ...s. References * * Properties of topological spaces {{topology-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charles Earl Rickart
Charles Earl Rickart (1913 – 17 April 2002) was an American mathematician, known for Rickart spaces. Rickart was born in Osage City, Kansas, and earned his B.A. and M.A. from the University of Kansas. In 1941 he received his PhD from the University of Michigan under Theophil Henry Hildebrandt with thesis ''Integration in a Convex Linear Topological Space''. Rickart was for two years the Benjamin Pierce Instructor at Harvard University. He joined the Yale mathematics faculty in 1943, served as chair of the department from 1959 to 1965, became the first Percey F. Smith Professor of Mathematics in 1963, and retired in 1983. Rickart did research on Banach algebras and was the author of three books. In the late 1950s and early 1960s he was one of the pioneers in introducing the "new math" into American schools. His doctoral students include Samuel Merrill III Samuel Merrill III (born 1939) is an American mathematician and political scientist best known for his work on alte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topologi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other top ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
C*-algebra
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stonean Space
In mathematics, an extremally disconnected space is a topological space in which the closure of every open set is open. (The term "extremally disconnected" is correct, even though the word "extremally" does not appear in most dictionaries, and is sometimes mistaken by spellcheckers for the homophone ''extremely disconnected''.) An extremally disconnected space that is also compact and Hausdorff is sometimes called a Stonean space. This is not the same as a Stone space, which is a totally disconnected compact Hausdorff space. Every Stonean space is a Stone space, but not vice versa. In the duality between Stone spaces and Boolean algebras, the Stonean spaces correspond to the complete Boolean algebras. An extremally disconnected first-countable collectionwise Hausdorff space must be discrete. In particular, for metric spaces, the property of being extremally disconnected (the closure of every open set is open) is equivalent to the property of being discrete (every set is o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AW*-algebra
In mathematics, an AW*-algebra is an algebraic generalization of a W*-algebra. They were introduced by Irving Kaplansky in 1951. As operator algebras, von Neumann algebras, among all C*-algebras, are typically handled using one of two means: they are the dual space of some Banach space, and they are determined to a large extent by their projections. The idea behind AW*-algebras is to forgo the former, topological, condition, and use only the latter, algebraic, condition. Definition Recall that a projection of a C*-algebra is a self-adjoint idempotent element. A C*-algebra ''A'' is an AW*-algebra if for every subset ''S'' of ''A'', the left annihilator :\mathrm_L(S)=\\, is generated as a left ideal by some projection ''p'' of ''A'', and similarly the right annihilator is generated as a right ideal by some projection ''q'': :\forall S \subseteq A\, \exists p,q \in \mathrm(A) \colon \mathrm_L(S)=Ap, \quad \mathrm_R(S)=qA. Hence an AW*-algebra is a C*-algebras that is at the same ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Totally Disconnected
In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) are connected; in a totally disconnected space, these are the ''only'' connected proper subsets. An important example of a totally disconnected space is the Cantor set, which is homeomorphic to the set of ''p''-adic integers. Another example, playing a key role in algebraic number theory, is the field of ''p''-adic numbers. Definition A topological space X is totally disconnected if the connected components in X are the one-point sets. Analogously, a topological space X is totally path-disconnected if all path-components in X are the one-point sets. Another closely related notion is that of a totally separated space, i.e. a space where quasicomponents are singletons. That is, a topological space X is totally separated space ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sub-Stonean Space
In topology, a sub-Stonean space is a locally compact Hausdorff space such that any two open σ-compact disjoint subsets have disjoint compact closures. Related, an F-space, introduced by , is a completely regular Hausdorff space for which every finitely generated ideal of the ring of real-valued continuous functions is principal, or equivalently every real-valued continuous function f can be written as f=g, f, for some real-valued continuous function g. When dealing with compact spaces, the two concepts are the same, but in general, the concepts are different. The relationship between the sub-Stonean spaces and F-spaces is studied in Henriksen and Woods, 1989. Examples Rickart spaces and the corona set In mathematics, the corona or corona set of a topological space ''X'' is the complement β''X''\''X'' of the space in its Stone–Čech compactification β''X''. A topological space is said to be σ-compact if it is the union of countably ma ...s of locally compact σ- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |