Resurgent Function
   HOME





Resurgent Function
The term resurgent function (from , to get up again) comes from French mathematician Jean Écalle's ''theory of resurgent functions and alien calculus''. The theory evolved from the summability of divergent series (see Borel summation) and treats analytic functions with isolated singularities. He introduced the term in the late 1970s. ''Resurgent functions'' have applications in asymptotic analysis, in the theory of differential equations, in perturbation theory and in quantum field theory. For analytic functions with isolated singularities, the Alien calculus can be derived, a special algebra for their derivatives. Definition A \Omega-resurgent function is an element of \mathbb\delta\oplus \hat_, i.e. an element of the form c\delta + \hat from \mathbb\delta \oplus \mathbb\, where c\in \mathbb and \hat is a ''\Omega-continuable germ''. A power series \widetilde\in \mathbb z^ whose formal Borel transformation is a \Omega-resurgent function is called \Omega-resurgent series. B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean Écalle
Jean Écalle (born 1947) is a French mathematician, specializing in dynamic systems, perturbation theory, and analysis. Écalle received, in 1974 from the University of Paris-Saclay in Orsay, a doctorate under the supervision of Hubert Delange with Thèse d'État entitled ''La théorie des invariants holomorphes''. He is a ''directeur de recherche'' (senior researcher) of the Centre national de la recherche scientifique (CNRS) and is a professor at the University of Paris-Saclay. He developed a theory of so-called " resurgent functions", analytic functions with isolated singularities, which have a special algebra of derivatives (''Alien calculus'', ''Calcul différentiel étranger''). "Resurgent functions" are divergent power series whose Borel transforms converge in a neighborhood of the origin and give rise, by means of analytic continuation, to (usually) multi-valued functions, but these multi-valued functions have merely isolated singularities without singularities that form cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Set
In mathematics, a point (topology), point is called an isolated point of a subset (in a topological space ) if is an element of and there exists a Neighborhood (mathematics), neighborhood of that does not contain any other points of . This is equivalent to saying that the Singleton (mathematics), singleton is an open set in the topological space (considered as a subspace topology, subspace of ). Another equivalent formulation is: an element of is an isolated point of if and only if it is not a limit point of . If the space is a metric space, for example a Euclidean space, then an element of is an isolated point of if there exists an open ball around that contains only finitely many elements of . A point set that is made up only of isolated points is called a discrete set or discrete point set (see also discrete space). Related notions Any discrete subset of Euclidean space must be countable, since the isolation of each of its points together with the fact that R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Unit (mathematics)
In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element of a ring is a unit if there exists in such that vu = uv = 1, where is the multiplicative identity; the element is unique for this property and is called the multiplicative inverse of . The set of units of forms a group under multiplication, called the group of units or unit group of . Other notations for the unit group are , , and (from the German term ). Less commonly, the term ''unit'' is sometimes used to refer to the element of the ring, in expressions like ''ring with a unit'' or ''unit ring'', and also unit matrix. Because of this ambiguity, is more commonly called the "unity" or the "identity" of the ring, and the phrases "ring with unity" or a "ring with identity" may be used to emphasize that one is considering a ring instead of a rng. Examples The multiplicative identity and its additive inverse are always units. More gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convolution
In mathematics (in particular, functional analysis), convolution is a operation (mathematics), mathematical operation on two function (mathematics), functions f and g that produces a third function f*g, as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The term ''convolution'' refers to both the resulting function and to the process of computing it. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result (see #Properties, commutativity). Graphically, it expresses how the 'shape' of one function is modified by the other. Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution f*g differs from cross-correlation f \star g only in that either f(x) or g(x) is reflected about the y-axis in convolution; thus i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

\zeta
Zeta (, ; uppercase Ζ, lowercase ζ; , , classical or ''zē̂ta''; ''zíta'') is the sixth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 7. It was derived from the Phoenician letter zayin . Letters that arose from zeta include the Roman Z and Cyrillic З. Name Unlike the other Greek letters, this letter did not take its name from the Phoenician letter from which it was derived; it was given a new name on the pattern of beta, eta and theta. The word ''zeta'' is the ancestor of ''zed'', the name of the Latin letter Z in Commonwealth English. Swedish and many Romance languages (such as Italian and Spanish) do not distinguish between the Greek and Roman forms of the letter; "''zeta''" is used to refer to the Roman letter Z as well as the Greek letter. Uses Letter The letter ζ represents the voiced alveolar fricative in Modern Greek. The sound represented by zeta in Greek before 400 BC is disputed. See Ancient Greek phonolog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Émile Borel
Félix Édouard Justin Émile Borel (; 7 January 1871 – 3 February 1956) was a French people, French mathematician and politician. As a mathematician, he was known for his founding work in the areas of measure theory and probability. Biography Borel was born in Saint-Affrique, Aveyron, the son of a Protestant pastor. He studied at the Collège Sainte-Barbe and Lycée Louis-le-Grand before applying to both the École normale supérieure (Paris), École normale supérieure and the École Polytechnique. He qualified in the first position for both and chose to attend the former institution in 1889. That year he also won the concours général, an annual national mathematics competition. After graduating in 1892, he placed first in the agrégation, a competitive civil service examination leading to the position of professeur agrégé. His thesis, published in 1893, was titled ''Sur quelques points de la théorie des fonctions'' ("On some points in the theory of functions"). That y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Germ (mathematics)
In mathematics, the notion of a germ of an object in/on a topological space is an equivalence class of that object and others of the same kind that captures their shared local properties. In particular, the objects in question are mostly functions (or maps) and subsets. In specific implementations of this idea, the functions or subsets in question will have some property, such as being analytic or smooth, but in general this is not needed (the functions in question need not even be continuous); it is however necessary that the space on/in which the object is defined is a topological space, in order that the word ''local'' has some meaning. Name The name is derived from ''cereal germ'' in a continuation of the sheaf metaphor, as a germ is (locally) the "heart" of a function, as it is for a grain. Formal definition Basic definition Given a point ''x'' of a topological space ''X'', and two maps f, g: X \to Y (where ''Y'' is any set), then f and g define the same germ at ''x'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Summation
In mathematics, Borel summation is a summation method for divergent series, introduced by . It is particularly useful for summing divergent asymptotic series, and in some sense gives the best possible sum for such series. There are several variations of this method that are also called Borel summation, and a generalization of it called Mittag-Leffler summation. Definition There are (at least) three slightly different methods called Borel summation. They differ in which series they can sum, but are consistent, meaning that if two of the methods sum the same series they give the same answer. Throughout let denote a formal power series :A(z) = \sum_^\infty a_kz^k, and define the Borel transform of to be its corresponding exponential series :\mathcalA(t) \equiv \sum_^\infty \fract^k. Borel's exponential summation method Let denote the partial sum :A_n(z) = \sum_^n a_k z^k. A weak form of Borel's summation method defines the Borel sum of to be : \lim_ e^\sum_^\infty \f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inabili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perturbation Theory
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbative" parts. In regular perturbation theory, the solution is expressed as a power series in a small parameter The first term is the known solution to the solvable problem. Successive terms in the series at higher powers of \varepsilon usually become smaller. An approximate 'perturbation solution' is obtained by truncating the series, often keeping only the first two terms, the solution to the known problem and the 'first order' perturbation correction. Perturbation theory is used in a wide range of fields and reaches its most sophisticated and advanced forms in quantum field theory. Perturbation theory (quantum mechanics) describes the use of this method in quantum mechanics. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]