HOME



picture info

Regular Pentagon
In geometry, a pentagon () is any five-sided polygon or 5-gon. The sum of the internal angles in a simple polygon, simple pentagon is 540°. A pentagon may be simple or list of self-intersecting polygons, self-intersecting. A self-intersecting ''regular pentagon'' (or ''star polygon, star pentagon'') is called a pentagram. Regular pentagons A ''regular polygon, regular pentagon'' has Schläfli symbol and interior angles of 108°. A ''regular polygon, regular pentagon'' has five lines of reflectional symmetry, and rotational symmetry of order 5 (through 72°, 144°, 216° and 288°). The diagonals of a convex polygon, convex regular pentagon are in the golden ratio to its sides. Given its side length t, its height H (distance from one side to the opposite vertex), width W (distance between two farthest separated points, which equals the diagonal length D) and circumradius R are given by: :\begin H &= \frac~t \approx 1.539~t, \\ W= D &= \frac~t\approx 1.618~t, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Polygon
In geometry, a set (mathematics), set of point (geometry), points are said to be concyclic (or cocyclic) if they lie on a common circle. A polygon whose vertex (geometry), vertices are concyclic is called a cyclic polygon, and the circle is called its ''circumscribing circle'' or ''circumcircle''. All concyclic points are equidistant from the center of the circle. Three points in the Euclidean plane, plane that do not all fall on a straight line are concyclic, so every triangle is a cyclic polygon, with a well-defined circumcircle. However, four or more points in the plane are not necessarily concyclic. After triangles, the special case of cyclic quadrilaterals has been most extensively studied. Perpendicular bisectors In general the centre ''O'' of a circle on which points ''P'' and ''Q'' lie must be such that ''OP'' and ''OQ'' are equal distances. Therefore ''O'' must lie on the perpendicular bisector of the line segment ''PQ''. For ''n'' distinct points there are triangula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inradius
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extended side, extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal and external angle, internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the internal and external angle, external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is per ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadratic Equation
In mathematics, a quadratic equation () is an equation that can be rearranged in standard form as ax^2 + bx + c = 0\,, where the variable (mathematics), variable represents an unknown number, and , , and represent known numbers, where . (If and then the equation is linear equation, linear, not quadratic.) The numbers , , and are the ''coefficients'' of the equation and may be distinguished by respectively calling them, the ''quadratic coefficient'', the ''linear coefficient'' and the ''constant coefficient'' or ''free term''. The values of that satisfy the equation are called ''solution (mathematics), solutions'' of the equation, and ''zero of a function, roots'' or ''zero of a function, zeros'' of the quadratic function on its left-hand side. A quadratic equation has at most two solutions. If there is only one solution, one says that it is a double root. If all the coefficients are real numbers, there are either two real solutions, or a single real double root, or two comple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Pentagon Using Carlyle Circle
Regular may refer to: Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instruments, tunings with equal intervals between the paired notes of successive open strings Other uses * Regular character, a main character who appears more frequently and/or prominently than a recurring character * Regular division of the plane, a series of drawings by the Dutch artist M. C. Escher which began in 1936 Language * Regular inflection, the formation of derived forms such as plurals in ways that are typical for the language ** Regular verb * Regular script, the newest of the Chinese script styles Mathematics Algebra and number theory * Regular category, a kind of category that has similarities to both Abelian categories and to the category of sets * Regular chains in computer algebra * Regular element (other), certain kinds of elements of an algebraic structure * Regular extension of fields * Regular ideal (multiple definition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exact Trigonometric Values
In mathematics, the values of the trigonometric functions can be expressed approximately, as in \cos (\pi/4) \approx 0.707, or exactly, as in \cos (\pi/ 4)= \sqrt 2 /2. While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots. The angles with trigonometric values that are expressible in this way are exactly those that can be constructed with a compass and straight edge, and the values are called constructible numbers. Common angles The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45° (see below for proofs). In the table below, the label "Undefined" represents a ratio 1:0. If the codomain of the trigonometric functions is taken to be the real numbers these entries are undefined, whereas if the codomain is taken to be the projectiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Double Angle Formula
In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. They are distinct from triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity. Pythagorean identities The basic relationship between the sine and cosine is given by the Pythagorean identity: \sin^2\theta + \cos^2\theta = 1, where \sin^2 \theta means ^2 and \cos^2 \t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Half-angle Formula
In trigonometry, trigonometric identities are Equality (mathematics), equalities that involve trigonometric functions and are true for every value of the occurring Variable (mathematics), variables for which both sides of the equality are defined. Geometrically, these are identity (mathematics), identities involving certain functions of one or more angles. They are distinct from Trigonometry#Triangle identities, triangle identities, which are identities potentially involving angles but also involving side lengths or other lengths of a triangle. These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integral, integration of non-trigonometric functions: a common technique involves first using the Trigonometric substitution, substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity. Pythagorean identities The basic relationship betwe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pythagoras' Theorem
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides , and the hypotenuse , sometimes called the Pythagorean equation: :a^2 + b^2 = c^2 . The theorem is named for the Greek philosopher Pythagoras, born around 570 BC. The theorem has been proved numerous times by many different methods – possibly the most for any mathematical theorem. The proofs are diverse, including both geometric proofs and algebraic proofs, with some dating back thousands of years. When Euclidean space is represented by a Cartesian coordinate system in analytic geometry, Euclidean distance satisfies the Pythagorean relation: the squared distance betw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polyhedra (book)
''Polyhedra'' is a book on polyhedra, by Peter R. Cromwell. It was published by in 1997 by the Cambridge University Press, with an unrevised paperback edition in 1999. Topics The book covers both the mathematics of polyhedra and its historical development, limiting itself only to three-dimensional geometry. The notion of what it means to be a polyhedron has varied over the history of the subject, as have other related definitions, an issue that the book handles largely by keeping definitions informal and flexible, and by pointing out problematic examples for these intuitive definitions. Many digressions help make the material readable, and the book includes many illustrations, including historical reproductions, line diagrams, and photographs of models of polyhedra. ''Polyhedra'' has ten chapters, the first four of which are primarily historical, with the remaining six more technical. The first chapter outlines the history of polyhedra from the ancient world up to Hilbert's third ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richmond Pentagon 1
Richmond most often refers to: * Richmond, British Columbia, a city in Canada * Richmond, California, a city in the United States * Richmond, London, a town in the London Borough of Richmond upon Thames, England * Richmond, North Yorkshire, a town in England * Richmond, Victoria, a suburb of Melbourne, Australia * Richmond, Virginia, the capital city of Virginia, United States Richmond may also refer to: People * Richmond (surname) * Earl of Richmond * Duke of Richmond * Richmond C. Beatty (1905–1961), American academic, biographer and critic * Richmond Avenal, character in British sitcom The IT Crowd Places Australia * Richmond, New South Wales ** RAAF Base Richmond ** Richmond Woodlands Important Bird Area * Richmond River, New South Wales ** Division of Richmond (Federal Electoral district) ** Electoral district of Richmond (New South Wales) * Richmond, Queensland * Shire of Richmond, Queensland * Richmond, South Australia * Richmond, Tasmania * Richmond, Vic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat Prime
In mathematics, a Fermat number, named after Pierre de Fermat (1601–1665), the first known to have studied them, is a positive integer of the form:F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers are: 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, 340282366920938463463374607431768211457, ... . If 2''k'' + 1 is prime and , then ''k'' itself must be a power of 2, so is a Fermat number; such primes are called Fermat primes. , the only known Fermat primes are , , , , and . Basic properties The Fermat numbers satisfy the following recurrence relations: : F_ = (F_-1)^+1 : F_ = F_ \cdots F_ + 2 for ''n'' ≥ 1, : F_ = F_ + 2^F_ \cdots F_ : F_ = F_^2 - 2(F_-1)^2 for . Each of these relations can be proved by mathematical induction. From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1. To see this, suppose that and ''F'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compass And Straightedge
In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an Idealization (science philosophy), idealized ruler and a Compass (drawing tool), compass. The idealized ruler, known as a straightedge, is assumed to be infinite in length, have only one edge, and no markings on it. The compass is assumed to have no maximum or minimum radius, and is assumed to "collapse" when lifted from the page, so it may not be directly used to transfer distances. (This is an unimportant restriction since, using a multi-step procedure, a distance can be transferred even with a collapsing compass; see compass equivalence theorem. Note however that whilst a non-collapsing compass held against a straightedge might seem to be equivalent to marking it, the neusis construction is still impermissible and this is what unmarked really ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]