HOME



picture info

Real Computation
In computability theory, the theory of real computation deals with hypothetical computing machines using infinite-precision real numbers. They are given this name because they operate on the set of real numbers. Within this theory, it is possible to prove interesting statements such as "The complement of the Mandelbrot set is only partially decidable." These hypothetical computing machines can be viewed as idealised analog computers which operate on real numbers, whereas digital computers are limited to computable numbers. They may be further subdivided into differential (mathematics), differential and algebraic models (digital computers, in this context, should be thought of as topology, topological, at least insofar as their operation on computable reals is concerned). Depending on the model chosen, this may enable real computers to solve problems that are inextricable on digital computers (For example, Hava Siegelmann's neural nets can have noncomputable real weights, making th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Operational Amplifier Integrator
An operational definition specifies concrete, replicable procedures designed to represent a construct. In the words of American psychologist S.S. Stevens (1935), "An operation is the performance which we execute in order to make known a concept." For example, an operational definition of "fear" (the construct) often includes measurable physiologic responses that occur in response to a perceived threat. Thus, "fear" might be operationally defined as specified changes in heart rate, electrodermal activity, pupil dilation, and blood pressure. Overview An operational definition is designed to model or represent a concept or theoretical definition, also known as a construct. Scientists should describe the operations (procedures, actions, or processes) that define the concept with enough specificity such that other investigators can replicate their research. Operational definitions are also used to define system states in terms of a specific, publicly accessible process of preparation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sharp P
Sharp or SHARP may refer to: Acronyms * SHARP (helmet ratings) (Safety Helmet Assessment and Rating Programme), a British motorcycle helmet safety rating scheme * Self Help Addiction Recovery Program, a charitable organisation founded in 1991 by Barbara Bach and Pattie Boyd * Sexual Harassment/Assault Response & Prevention, a US Army program dealing with sexual harassment * Skinheads Against Racial Prejudice, an anti-racist Trojan skinhead organization formed to combat White power skinheads * Society for the History of Authorship, Reading and Publishing * Stationary High Altitude Relay Platform, a 1980s beamed-power aircraft * Super High Altitude Research Project, a 1990s project to develop a high-velocity gun * SIGINT High Altitude Replenishment Program (SHARP) Companies * I. P. Sharp Associates, a former Canadian computer services company * Sharp Airlines, an Australian regional airline * Sharp Corporation, a Japanese electronics manufacturer ** Sharp Solar, a manufactur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Computer And System Sciences
The ''Journal of Computer and System Sciences'' (JCSS) is a peer-reviewed scientific journal in the field of computer science. ''JCSS'' is published by Elsevier, and it was started in 1967. Many influential scientific articles have been published in ''JCSS''; these include five papers that have won the Gödel Prize The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer science, given jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery Special Inter .... Its managing editor is Michael Segal. Notes References * * External links * Journal homepageScienceDirect accessDBLP information Computer science journals Elsevier academic journals {{compu-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stephen Smale
Stephen Smale (born July 15, 1930) is an American mathematician, known for his research in topology, dynamical systems and mathematical economics. He was awarded the Fields Medal in 1966 and spent more than three decades on the mathematics faculty of the University of California, Berkeley (1960–1961 and 1964–1995), where he currently is Professor Emeritus, with research interests in algorithms, numerical analysis and global analysis. Education and career Smale was born in Flint, Michigan and entered the University of Michigan in 1948. Initially, he was a good student, placing into an honors calculus sequence taught by Bob Thrall and earning himself A's. However, his sophomore and junior years were marred with mediocre grades, mostly Bs, Cs and even an F in nuclear physics. Smale obtained his Bachelor of Science degree in 1952. Despite his grades, with some luck, Smale was accepted as a graduate student at the University of Michigan's mathematics department. Yet again, Smale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lenore Blum
Lenore Carol Blum (née Epstein, born December 18, 1942) is an American computer scientist and mathematician who has made contributions to the theories of real number computation, cryptography, and pseudorandom number generation. She was a distinguished career professor of computer science at Carnegie Mellon University until 2019 and is currently a professor in residence at the University of California, Berkeley. She is also known for her efforts to increase diversity in mathematics and computer science. Early life and education Blum was born to a Jewish family in New York City, where her mother was a science teacher. They moved to Venezuela when Blum was nine. After graduating from her Venezuelan high school at age 16, she studied architecture at Carnegie Institute of Technology (now Carnegie Mellon University) beginning in 1959. With the assistance of Alan Perlis, she shifted fields to mathematics in 1960. She married Manuel Blum, then a student at the Massachusetts Institute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Finite Automaton
In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This means that the magnitude of the physical property can take on only discrete values consisting of integer multiples of one quantum. For example, a photon is a single quantum of light of a specific frequency (or of any other form of electromagnetic radiation). Similarly, the energy of an electron bound within an atom is quantized and can exist only in certain discrete values. Atoms and matter in general are stable because electrons can exist only at discrete energy levels within an atom. Quantization is one of the foundations of the much broader physics of quantum mechanics. Quantization of energy and its influence on how energy and matter interact (quantum electrodynamics) is part of the fundamental framework for understanding and describing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real RAM
In computing, especially computational geometry, a real RAM (random-access machine) is a mathematical model of a computer that can compute with exact real numbers instead of the binary fixed-point or floating-point numbers used by most actual computers. The real RAM was formulated by Michael Ian Shamos in his 1978 Ph.D. dissertation. Model The "RAM" part of the real RAM model name stands for "random-access machine". This is a model of computing that resembles a simplified version of a standard computer architecture. It consists of a stored program, a computer memory unit consisting of an array of cells, and a central processing unit with a bounded number of registers. Each memory cell or register can store a real number. Under the control of the program, the real RAM can transfer real numbers between memory and registers, and perform arithmetic operations on the values stored in the registers. The allowed operations typically include addition, subtraction, multiplication, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypercomputation
Hypercomputation or super-Turing computation is a set of hypothetical models of computation that can provide outputs that are not Turing-computable. For example, a machine that could solve the halting problem would be a hypercomputer; so too would one that could correctly evaluate every statement in Peano arithmetic. The Church–Turing thesis states that any "computable" function that can be computed by a mathematician with a pen and paper using a finite set of simple algorithms, can be computed by a Turing machine. Hypercomputers compute functions that a Turing machine cannot and which are, hence, not computable in the Church–Turing sense. Technically, the output of a random Turing machine is uncomputable; however, most hypercomputing literature focuses instead on the computation of deterministic, rather than random, uncomputable functions. History A computational model going beyond Turing machines was introduced by Alan Turing in his 1938 PhD dissertation '' Systems of L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SIGACT
ACM SIGACT or SIGACT is the Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory, whose purpose is support of research in theoretical computer science. It was founded in 1968 by Patrick C. Fischer. Publications SIGACT publishes a quarterly print newsletter, ''SIGACT News''. Its online version, ''SIGACT News Online'', is available since 1996 for SIGACT members, with unrestricted access to some features. Conferences SIGACT sponsors or has sponsored several annual conferences. *COLT: Conference on Learning Theory, until 1999 *PODC: ACM Symposium on Principles of Distributed Computing (jointly sponsored by SIGOPS) *PODS: ACM Symposium on Principles of Database Systems (jointly sponsored by SIGAI and SIGACT) *POPL: ACM Symposium on Principles of Programming Languages *SOCG: ACM Symposium on Computational Geometry (jointly sponsored by SIGGRAPH), until 2014 *SODA: ACM/SIAM Symposium on Discrete Algorithms (jointly sponsored by the Society fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scott Aaronson
Scott Joel Aaronson (born May 21, 1981) is an American Theoretical computer science, theoretical computer scientist and Schlumberger Centennial Chair of Computer Science at the University of Texas at Austin. His primary areas of research are computational complexity theory and quantum computing. Early life and education Aaronson grew up in the United States, though he spent a year in Asia when his father—a Science journalism, science writer turned public-relations executive—was posted to Hong Kong. He enrolled in a school there that permitted him to skip ahead several years in math, but upon returning to the US, he found his education restrictive, getting bad grades and having run-ins with teachers. He enrolled in The Clarkson School, a gifted education program run by Clarkson University, which enabled Aaronson to apply for colleges while only in his freshman year of high school. He was accepted into Cornell University, where he obtained his BSc in computer science in 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bekenstein Bound
In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy ''S'', or Shannon entropy ''H'', that can be contained within a given finite region of space which has a finite amount of energy—or conversely, the maximum amount of information that is required to perfectly describe a given physical system down to the quantum level. It implies that the information of a physical system, or the information necessary to perfectly describe that system, must be finite if the region of space and the energy are finite. Equations The universal form of the bound was originally found by Jacob Bekenstein in 1981 as the inequality S \leq \frac, where ''S'' is the entropy, ''k'' is the Boltzmann constant, ''R'' is the radius of a sphere that can enclose the given system, ''E'' is the total mass–energy including any rest masses, ''ħ'' is the reduced Planck constant, and ''c'' is the speed of light. Note that while gravity plays a significant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holographic Principle
The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region – such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string theoretic interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Susskind said, "The three-dimensional world of ordinary experience—the universe filled with galaxies, stars, planets, houses, boulders, and people—is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence. The holographic pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]