HOME
*





ReLU
In the context of artificial neural networks, the rectifier or ReLU (rectified linear unit) activation function is an activation function defined as the positive part of its argument: : f(x) = x^+ = \max(0, x), where ''x'' is the input to a neuron. This is also known as a ramp function and is analogous to half-wave rectification in electrical engineering. This activation function started showing up in the context of visual feature extraction in hierarchical neural networks starting in the late 1960s. It was later argued that it has strong biological motivations and mathematical justifications. In 2011 it was found to enable better training of deeper networks, compared to the widely used activation functions prior to 2011, e.g., the logistic sigmoid (which is inspired by probability theory; see logistic regression) and its more practical counterpart, the hyperbolic tangent. The rectifier is, , the most popular activation function for deep neural networks. Rectified linear uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Activation Function
In artificial neural networks, the activation function of a node defines the output of that node given an input or set of inputs. A standard integrated circuit can be seen as a digital network of activation functions that can be "ON" (1) or "OFF" (0), depending on input. This is similar to the linear perceptron in neural networks. However, only ''nonlinear'' activation functions allow such networks to compute nontrivial problems using only a small number of nodes, and such activation functions are called nonlinearities. Classification of activation functions The most common activation functions can be divided in three categories: ridge functions, radial functions and fold functions. An activation function f is saturating if \lim_ , \nabla f(v), = 0. It is nonsaturating if it is not saturating. Non-saturating activation functions, such as ReLU, may be better than saturating activation functions, as they don't suffer from vanishing gradient. Ridge activation functions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Swish Function
The swish function is a mathematical function defined as follows: : \operatorname(x) = x \operatorname(\beta x) = \frac. where β is either constant or a trainable parameter depending on the model. For β = 1, the function becomes equivalent to the Sigmoid Linear Unit or SiLU, first proposed alongside the GELU in 2016. The SiLU was later rediscovered in 2017 as the Sigmoid-weighted Linear Unit (SiL) function used in reinforcement learning. The SiLU/SiL was then rediscovered as the swish over a year after its initial discovery, originally proposed without the learnable parameter β, so that β implicitly equalled 1. The swish paper was then updated to propose the activation with the learnable parameter β, though researchers usually let β = 1 and do not use the learnable parameter β. For β = 0, the function turns into the scaled linear function f(''x'') = ''x''/2. With β → ∞, the sigmoid component approaches a 0-1 function, so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ramp Function
The ramp function is a unary real function, whose graph is shaped like a ramp. It can be expressed by numerous definitions, for example "0 for negative inputs, output equals input for non-negative inputs". The term "ramp" can also be used for other functions obtained by scaling and shifting, and the function in this article is the ''unit'' ramp function (slope 1, starting at 0). In mathematics, the ramp function is also known as the positive part. In machine learning, it is commonly known as a ReLU activation function or a rectifier in analogy to half-wave rectification in electrical engineering. In statistics (when used as a likelihood function) it is known as a tobit model. This function has numerous applications in mathematics and engineering, and goes by various names, depending on the context. There are differentiable variants of the ramp function. Definitions The ramp function () may be defined analytically in several ways. Possible definitions are: * A piec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Deep Learning
Deep learning (also known as deep structured learning) is part of a broader family of machine learning methods based on artificial neural networks with representation learning. Learning can be Supervised learning, supervised, Semi-supervised learning, semi-supervised or Unsupervised learning, unsupervised. Deep-learning architectures such as #Deep_neural_networks, deep neural networks, deep belief networks, deep reinforcement learning, recurrent neural networks, convolutional neural networks and Transformer (machine learning model), Transformers have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, Climatology, climate science, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance. Artificial neural networks (ANNs) were inspired by information processing and distr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vanishing Gradient Problem
In machine learning, the vanishing gradient problem is encountered when training artificial neural networks with gradient-based learning methods and backpropagation. In such methods, during each iteration of training each of the neural network's weights receives an update proportional to the partial derivative of the error function with respect to the current weight. The problem is that in some cases, the gradient will be vanishingly small, effectively preventing the weight from changing its value. In the worst case, this may completely stop the neural network from further training. As one example of the problem cause, traditional activation functions such as the hyperbolic tangent function have gradients in the range , and backpropagation computes gradients by the chain rule. This has the effect of multiplying of these small numbers to compute gradients of the early layers in an -layer network, meaning that the gradient (error signal) decreases exponentially with while the ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Deep Learning
Deep learning (also known as deep structured learning) is part of a broader family of machine learning methods based on artificial neural networks with representation learning. Learning can be Supervised learning, supervised, Semi-supervised learning, semi-supervised or Unsupervised learning, unsupervised. Deep-learning architectures such as #Deep_neural_networks, deep neural networks, deep belief networks, deep reinforcement learning, recurrent neural networks, convolutional neural networks and Transformer (machine learning model), Transformers have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, Climatology, climate science, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance. Artificial neural networks (ANNs) were inspired by information processing and distr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yoshua Bengio
Yoshua Bengio (born March 5, 1964) is a Canadian computer scientist, most noted for his work on artificial neural networks and deep learning. He is a professor at the Department of Computer Science and Operations Research at the Université de Montréal and scientific director of the Montreal Institute for Learning Algorithms (MILA). Bengio received the 2018 ACM A.M. Turing Award, together with Geoffrey Hinton and Yann LeCun, for their work in deep learning. Bengio, Hinton, and LeCun, are sometimes referred to as the "Godfathers of AI" and "Godfathers of Deep Learning". Early life and education Bengio was born in France to a Jewish family who immigrated to France from Morocco, and then immigrated again to Canada. He received his BScience (electrical engineering), MEng (computer science) and PhD (computer science) from McGill University. Bengio is the brother of Samy Bengio, who was a scientist at Google. The Bengio brothers lived in Morocco for a year during their fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Neuroscience
Computational neuroscience (also known as theoretical neuroscience or mathematical neuroscience) is a branch of  neuroscience which employs mathematical models, computer simulations, theoretical analysis and abstractions of the brain to understand the principles that govern the development, structure, physiology and cognitive abilities of the nervous system. Computational neuroscience employs computational simulations to validate and solve mathematical models, and so can be seen as a sub-field of theoretical neuroscience; however, the two fields are often synonymous. The term mathematical neuroscience is also used sometimes, to stress the quantitative nature of the field. Computational neuroscience focuses on the description of biologically plausible neurons (and neural systems) and their physiology and dynamics, and it is therefore not directly concerned with biologically unrealistic models used in connectionism, control theory, cybernetics, quantitative psychol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




BERT (language Model)
Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based machine learning technique for natural language processing (NLP) pre-training developed by Google. BERT was created and published in 2018 by Jacob Devlin and his colleagues from Google. In 2019, Google announced that it had begun leveraging BERT in its search engine, and by late 2020 it was using BERT in almost every English-language query. A 2020 literature survey concluded that "in a little over a year, BERT has become a ubiquitous baseline in NLP experiments", counting over 150 research publications analyzing and improving the model. The original English-language BERT has two models: (1) the BERTBASE: 12 encoders with 12 bidirectional self-attention heads, and (2) the BERTLARGE: 24 encoders with 16 bidirectional self-attention heads. Both models are pre-trained from unlabeled data extracted from the BooksCorpus with 800M words and English Wikipedia with 2,500M words. Architecture BERT is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]