Ranking (information Retrieval)
Ranking of query is one of the fundamental problems in information retrieval (IR), the scientific/engineering discipline behind search engines. Given a query and a collection of documents that match the query, the problem is to rank, that is, sort, the documents in according to some criterion so that the "best" results appear early in the result list displayed to the user. Ranking in terms of information retrieval is an important concept in computer science and is used in many different applications such as search engine queries and recommender systems. A majority of search engines use ranking algorithms to provide users with accurate and relevant results. History The notion of page rank dates back to the 1940s and the idea originated in the field of economics. In 1941, Wassily Leontief developed an iterative method of valuing a country's sector based on the importance of other sectors that supplied resources to it. In 1965, Charles H Hubbell at the University of California, Sa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Information Retrieval
Information retrieval (IR) in computing and information science is the task of identifying and retrieving information system resources that are relevant to an Information needs, information need. The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text search, full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds. Automated information retrieval systems are used to reduce what has been called information overload. An IR system is a software system that provides access to books, journals and other documents; it also stores and manages those documents. Web search engines are the most visible IR applications. Overview An information retrieval process begins when a user enters a query into the sys ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Precision (information Retrieval)
In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written as a formula: \text = \frac Recall (also known as sensitivity) is the fraction of relevant instances that were retrieved. Written as a formula: \text = \frac Both precision and recall are therefore based on relevance. Consider a computer program for recognizing dogs (the relevant element) in a digital photograph. Upon processing a picture which contains ten cats and twelve dogs, the program identifies eight dogs. Of the eight elements identified as dogs, only five actually are dogs ( true positives), while the other three are cats ( false positives). Seven dogs were missed ( false negatives), and seven cats were correctly excl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semantic Search
Semantic search denotes search with meaning, as distinguished from lexical search where the search engine looks for literal matches of the query words or variants of them, without understanding the overall meaning of the query. Semantic search seeks to improve search accuracy by understanding the searcher's intent and the contextual meaning of terms as they appear in the searchable dataspace, whether on the Web or within a closed system, to generate more relevant results. Some authors regard semantic search as a set of techniques for retrieving knowledge from richly structured data sources like ontologies and XML as found on the Semantic Web. Such technologies enable the formal articulation of domain knowledge at a high level of expressiveness and could enable the user to specify their intent in more detail at query time. The articulation enhances content relevance and depth by including specific places, people, or concepts relevant to the query. Knowledge Graphs Tools like Goog ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Machine Learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Learning To Rank
Learning to rank. Slides from Tie-Yan Liu's talk at World Wide Web Conference, WWW 2009 conference aravailable online or machine-learned ranking (MLR) is the application of machine learning, typically Supervised learning, supervised, Semi-supervised learning, semi-supervised or reinforcement learning, in the construction of ranking function, ranking models for information retrieval systems. Training data may, for example, consist of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item. The goal of constructing the ranking model is to rank new, unseen lists in a similar way to rankings in the training data. Applications In information retrieval Ranking is a central part of many information retrieval problems, such as document retrieval, collaborative filtering, sentiment analysis, and online advertising. A possi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Precision And Recall
In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written as a formula: \text = \frac Recall (also known as sensitivity) is the fraction of relevant instances that were retrieved. Written as a formula: \text = \frac Both precision and recall are therefore based on relevance. Consider a computer program for recognizing dogs (the relevant element) in a digital photograph. Upon processing a picture which contains ten cats and twelve dogs, the program identifies eight dogs. Of the eight elements identified as dogs, only five actually are dogs ( true positives), while the other three are cats ( false positives). Seven dogs were missed ( false negatives), and seven cats were correctly ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gerard Salton
Gerard A. "Gerry" Salton (8 March 1927 – 28 August 1995) was a professor of computer science at Cornell University. Salton was perhaps the leading computer scientist working in the field of information retrieval during his time, and "the father of Information Retrieval". His group at Cornell developed the SMART Information Retrieval System, which he initiated when he was at Harvard. It was the first system to use the now popular vector space model for information retrieval. Education and career Salton was born Gerhard Anton Sahlmann in Nuremberg, Germany. He came to the United States in 1947 and was naturalized in 1952. He received a Bachelor's (1950) and Master's (1952) degree in mathematics from Brooklyn College, and a Ph.D. from Harvard in applied mathematics in 1958, the last of Howard Aiken's doctoral students, and taught there until 1965, when he joined Cornell University and co-founded its department of Computer Science. Salton was perhaps most well known for develop ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cosine Similarity
In data analysis, cosine similarity is a measure of similarity between two non-zero vectors defined in an inner product space. Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the magnitudes of the vectors, but only on their angle. The cosine similarity always belongs to the interval 1, +1 For example, two proportional vectors have a cosine similarity of +1, two orthogonal vectors have a similarity of 0, and two opposite vectors have a similarity of −1. In some contexts, the component values of the vectors cannot be negative, in which case the cosine similarity is bounded in ,1/math>. For example, in information retrieval and text mining, each word is assigned a different coordinate and a document is represented by the vector of the numbers of occurrences of each word in the document. Cosine similarity then gives a u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Space Model
Vector space model or term vector model is an algebraic model for representing text documents (or more generally, items) as vector space, vectors such that the distance between vectors represents the relevance between the documents. It is used in information filtering, information retrieval, index (search engine), indexing and relevancy rankings. Its first use was in the SMART Information Retrieval System. Definitions In this section we consider a particular vector space model based on the Bag-of-words model, bag-of-words representation. Documents and queries are represented as vectors. :d_j = ( w_ ,w_ , \dotsc ,w_ ) :q = ( w_ ,w_ , \dotsc ,w_ ) Each Dimension (vector space), dimension corresponds to a separate term. If a term occurs in the document, its value in the vector is non-zero. Several different ways of computing these values, also known as (term) weights, have been developed. One of the best known schemes is tf-idf weighting (see the example below). The definition of ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistical Language Acquisition
Statistical language acquisition, a branch of developmental psycholinguistics, studies the process by which humans develop the ability to perceive, produce, comprehend, and communicate with natural language in all of its aspects (phonological, syntactic, lexical, morphological, semantic) through the use of general learning mechanisms operating on statistical patterns in the linguistic input. Statistical learning acquisition claims that infants' language-learning is based on pattern perception rather than an innate biological grammar. Several statistical elements such as frequency of words, frequent frames, phonotactic patterns and other regularities provide information on language structure and meaning for facilitation of language acquisition. Philosophy Fundamental to the study of statistical language acquisition is the centuries-old debate between rationalism (or its modern manifestation in the psycholinguistic community, nativism) and empiricism, with researchers in this fie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Space Model
Vector space model or term vector model is an algebraic model for representing text documents (or more generally, items) as vector space, vectors such that the distance between vectors represents the relevance between the documents. It is used in information filtering, information retrieval, index (search engine), indexing and relevancy rankings. Its first use was in the SMART Information Retrieval System. Definitions In this section we consider a particular vector space model based on the Bag-of-words model, bag-of-words representation. Documents and queries are represented as vectors. :d_j = ( w_ ,w_ , \dotsc ,w_ ) :q = ( w_ ,w_ , \dotsc ,w_ ) Each Dimension (vector space), dimension corresponds to a separate term. If a term occurs in the document, its value in the vector is non-zero. Several different ways of computing these values, also known as (term) weights, have been developed. One of the best known schemes is tf-idf weighting (see the example below). The definition of ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |