Ragsdale Conjecture
The Ragsdale conjecture is a mathematics, mathematical conjecture that concerns the possible arrangements of real algebraic curves embedded in the projective plane. It was proposed by Virginia Ragsdale in her dissertation in 1906 and was disproved in 1979. It has been called "the oldest and most famous conjecture on the topology of real algebraic curves". Formulation of the conjecture Ragsdale's dissertation, "On the Arrangement of the Real Branches of Plane Algebraic Curves," was published by the American Journal of Mathematics in 1906. The dissertation was a treatment of Hilbert's sixteenth problem, which had been proposed by David Hilbert, Hilbert in 1900, along with Hilbert's problems, 22 other unsolved problems of the 19th century; it is one of the handful of Hilbert's problems that remains wholly unresolved. Ragsdale formulated a conjecture that provided an upper bound on the number of topological circles of a certain type, along with the basis of evidence. Conjecture Ragsdale ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. More generally, an algebraic curve is an algebraic variety of dimension one. Equivalently, an algebraic curve is an algebraic variety that is birationally equivalent to an algebraic plane curve. If the curve is contained in an affine space or a projective space, one can take a projection for s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Counterexamples
A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "John Smith is not a lazy student" is a counterexample to the generalization “students are lazy”, and both a counterexample to, and disproof of, the universal quantification “all students are lazy.” In mathematics, the term "counterexample" is also used (by a slight abuse) to refer to examples which illustrate the necessity of the full hypothesis of a theorem. This is most often done by considering a case where a part of the hypothesis is not satisfied and the conclusion of the theorem does not hold. In mathematics In mathematics, counterexamples are often used to prove the boundaries of possible theorems. By using counterexamples to show that certain conjectures are false, mathematical researchers can then avoid going down blind alleys and learn to modify conjecture ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Counterexample
A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "John Smith is not a lazy student" is a counterexample to the generalization “students are lazy”, and both a counterexample to, and disproof of, the universal quantification “all students are lazy.” In mathematics, the term "counterexample" is also used (by a slight abuse) to refer to examples which illustrate the necessity of the full hypothesis of a theorem. This is most often done by considering a case where a part of the hypothesis is not satisfied and the conclusion of the theorem does not hold. In mathematics In mathematics, counterexamples are often used to prove the boundaries of possible theorems. By using counterexamples to show that certain conjectures are false, mathematical researchers can then avoid going down blind alleys and learn to modify conjectur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Doklady Akademii Nauk SSSR
The ''Proceedings of the USSR Academy of Sciences'' (russian: Доклады Академии Наук СССР, ''Doklady Akademii Nauk SSSR'' (''DAN SSSR''), french: Comptes Rendus de l'Académie des Sciences de l'URSS) was a Soviet journal that was dedicated to publishing original, academic research papers in physics, mathematics, chemistry, geology, and biology. It was first published in 1933 and ended in 1992 with volume 322, issue 3. Today, it is continued by ''Doklady Akademii Nauk'' (russian: Доклады Академии Наук), which began publication in 1992. The journal is also known as the ''Proceedings of the Russian Academy of Sciences (RAS)''. ''Doklady'' has had a complicated publication and translation history. A number of translation journals exist which publish selected articles from the original by subject section; these are listed below. History The Russian Academy of Sciences dates from 1724, with a continuous series of variously named publications dat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oleg Viro
Oleg Yanovich Viro (russian: Олег Янович Виро) (b. 13 May 1948, Leningrad, USSR) is a Russian mathematician in the fields of topology and algebraic geometry, most notably real algebraic geometry, tropical geometry and knot theory. Contributions Viro developed a "patchworking" technique in algebraic geometry, which allows real algebraic varieties to be constructed by a "cut and paste" method. Using this technique, Viro completed the isotopy classification of non-singular plane projective curves of degree 7. The patchworking technique was one of the fundamental ideas which motivated the development of tropical geometry. In topology, Viro is most known for his joint work with Vladimir Turaev, in which the Turaev-Viro invariants (relatives of the Reshetikhin-Turaev invariants) and related topological quantum field theory notions were introduced. Education and career Viro studied at the Leningrad State University where he received his Ph.D. degree in 1974; his advisor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ivan Petrovsky
Ivan Georgievich Petrovsky (russian: Ива́н Гео́ргиевич Петро́вский) (18 January 1901 – 15 January 1973) (the family name is also transliterated as Petrovskii or Petrowsky) was a Soviet mathematician working mainly in the field of partial differential equations. He greatly contributed to the solution of Hilbert's 19th and 16th problems, and discovered what are now called Petrovsky lacunas. He also worked on the theories of boundary value problems, probability, and on the topology of algebraic curves and surfaces. Biography Petrovsky was a student of Dmitri Egorov. Among his students were Olga Ladyzhenskaya, Yevgeniy Landis, Olga Oleinik and Sergei Godunov. Petrovsky taught at Steklov Institute of Mathematics. He was a member of the Soviet Academy of Sciences since 1946 and was awarded Hero of Socialist Labor in 1969. He was the president of Moscow State University (1951–1973) and the head of the International Congress of Mathematicians (Moscow, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hilbert's Problems
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the ''Bulletin of the American Mathematical Society''. Earlier publications (in the original German) appeared in and Nature and influence of the problems Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer. For other proble ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of ''Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century. Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic. Life Early li ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hilbert's Sixteenth Problem
Hilbert's 16th problem was posed by David Hilbert at the Paris conference of the International Congress of Mathematicians in 1900, as part of his list of 23 problems in mathematics. The original problem was posed as the ''Problem of the topology of algebraic curves and surfaces'' (''Problem der Topologie algebraischer Kurven und Flächen''). Actually the problem consists of two similar problems in different branches of mathematics: * An investigation of the relative positions of the branches of real algebraic curves of degree ''n'' (and similarly for algebraic surfaces). * The determination of the upper bound for the number of limit cycles in two-dimensional polynomial vector fields of degree ''n'' and an investigation of their relative positions. The first problem is yet unsolved for ''n'' = 8. Therefore, this problem is what usually is meant when talking about Hilbert's sixteenth problem in real algebraic geometry. The second problem also remains unsolved: no up ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |