HOME





Quasi-empiricism
Quasi-empirical methods are scientific methods used to gain knowledge in situations where empirical evidence cannot be gathered through experimentation, or experience cannot falsify the ideas involved. Quasi-empirical methods aim to be as closely analogous to empirical methods as possible. Empirical research relies on, and its empirical methods involve experimentation and disclosure of apparatus for reproducibility, by which scientific findings are validated by other scientists. Empirical methods are studied extensively in the philosophy of science, but they cannot be used directly in fields whose hypotheses cannot be falsified by real experiment (for example, mathematics, philosophy, theology, and ideology). Because of such limits, the scientific method must rely not only on empirical methods but sometimes also on quasi-empirical ones. The prefix '' quasi-'' came to denote methods that are "almost" or "socially approximate" an ideal of truly empirical methods. Quasi-empirical m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Philosophy Of Mathematics
Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship to other areas of philosophy, particularly epistemology and metaphysics. Central questions posed include whether or not mathematical objects are purely abstract entities or are in some way concrete, and in what the relationship such objects have with physical reality consists. Major themes that are dealt with in philosophy of mathematics include: *''Reality'': The question is whether mathematics is a pure product of human mind or whether it has some reality by itself. *''Logic and rigor'' *''Relationship with physical reality'' *''Relationship with science'' *''Relationship with applications'' *''Mathematical truth'' *''Nature as human activity'' (science, the arts, art, game, or all together) Major themes Reality Logic and rigor Mathematical reasoning requires Mathematical rigor, rigor. This means that the definitions must be absolutely unambiguous and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-empiricism In Mathematics
Quasi-empiricism in mathematics is the attempt in the philosophy of mathematics to direct philosophers' attention to mathematical practice, in particular, relations with physics, social sciences, and computational mathematics, rather than solely to issues in the foundations of mathematics. Of concern to this discussion are several topics: the relationship of Philosophy of mathematics#Empiricism, empiricism (see Penelope Maddy) with mathematics, issues related to Philosophy of mathematics#Mathematical realism, realism, the importance of Philosophy of mathematics#Social constructivism or social realism, culture, necessity of Philosophy of mathematics#Constructivism, application, etc. Primary arguments A primary argument with respect to quasi-empiricism is that whilst mathematics and physics are frequently considered to be closely linked fields of study, this may reflect human cognitive bias. It is claimed that, despite rigorous application of appropriate empirical methods or mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bayesian Inference
Bayesian inference ( or ) is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available. Fundamentally, Bayesian inference uses a prior distribution to estimate posterior probabilities. Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a wide range of activities, including science, engineering, philosophy, medicine, sport, and law. In the philosophy of decision theory, Bayesian inference is closely related to subjective probability, often called "Bayesian probability". Introduction to Bayes' rule Formal explanation Bayesian inference derives the posterior probability as a consequence of two antecedents: a prior probability and a "likelihood function" derive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Philosophy Of Science
Philosophy of science is the branch of philosophy concerned with the foundations, methods, and implications of science. Amongst its central questions are the difference between science and non-science, the reliability of scientific theories, and the ultimate purpose and meaning of science as a human endeavour. Philosophy of science focuses on metaphysical, epistemic and semantic aspects of scientific practice, and overlaps with metaphysics, ontology, logic, and epistemology, for example, when it explores the relationship between science and the concept of truth. Philosophy of science is both a theoretical and empirical discipline, relying on philosophical theorising as well as meta-studies of scientific practice. Ethical issues such as bioethics and scientific misconduct are often considered ethics or science studies rather than the philosophy of science. Many of the central problems concerned with the philosophy of science lack contemporary consensus, including whether ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scientific Method
The scientific method is an Empirical evidence, empirical method for acquiring knowledge that has been referred to while doing science since at least the 17th century. Historically, it was developed through the centuries from the ancient and medieval world. The scientific method involves careful observation coupled with rigorous skepticism, because Philosophy of science#Observation inseparable from theory, cognitive assumptions can distort the interpretation of the Perception#Process and terminology, observation. Scientific inquiry includes creating a testable hypothesis through inductive reasoning, testing it through experiments and statistical analysis, and adjusting or discarding the hypothesis based on the results. Although procedures vary across Branches of science, fields, the underlying #Process, process is often similar. In more detail: the scientific method involves making conjectures (hypothetical explanations), predicting the logical consequences of hypothesis, then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Practice
Mathematical practice comprises the working practices of professional mathematicians: selecting theorems to prove, using informal notations to persuade themselves and others that various steps in the final proof are convincing, and seeking peer review and publication, as opposed to the end result of proven and published theorems. Philip Kitcher has proposed a more formal definition of a mathematical practice, as a quintuple. His intention was primarily to document mathematical practice through its historical changes. Historical tradition The evolution of mathematical practice was slow, and some contributors to modern mathematics did not follow even the practice of their time. For example, Pierre de Fermat was infamous for withholding his proofs, but nonetheless had a vast reputation for correct assertions of results. One motivation to study mathematical practice is that, despite much work in the 20th century, some still feel that the foundations of mathematics remain unclear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Logical Positivism
Logical positivism, also known as logical empiricism or neo-positivism, was a philosophical movement, in the empiricist tradition, that sought to formulate a scientific philosophy in which philosophical discourse would be, in the perception of its proponents, as authoritative and meaningful as empirical science. Logical positivism's central thesis was the verification principle, also known as the "verifiability criterion of meaning", according to which a statement is ''cognitively meaningful'' only if it can be verified through empirical observation or if it is a tautology (true by virtue of its own meaning or its own logical form). The verifiability criterion thus rejected statements of metaphysics, theology, ethics and aesthetics as ''cognitively meaningless'' in terms of truth value or factual content. Despite its ambition to overhaul philosophy by mimicking the structure and process of empirical science, logical positivism became erroneously stereotyped as an agenda t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thought Experiments
A thought experiment is an imaginary scenario that is meant to elucidate or test an argument or theory. It is often an experiment that would be hard, impossible, or unethical to actually perform. It can also be an abstract hypothetical that is meant to test our intuitions about morality or other fundamental philosophical questions. History The ancient Greek , "was the most ancient pattern of mathematical proof", and existed before Euclidean geometry, Euclidean mathematics, where the emphasis was on the conceptual, rather than on the experimental part of a thought experiment. Johann Witt-Hansen established that Hans Christian Ørsted was the first to use the equivalent German term . Ørsted was also the first to use the equivalent term in 1820. By 1883, Ernst Mach used in a different sense, to denote exclusively the conduct of a experiment that would be subsequently performed as a by his students. Physical and mental experimentation could then be contrasted: Mach asked hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General theory of relativity, relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time in physics, time, or four-dimensional spacetime. In particular, the ''curvature of spacetime'' is directly related to the energy and momentum of whatever is present, including matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations. Newton's law of universal gravitation, which describes gravity in classical mechanics, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence formula , which arises from special relativity, has been called "the world's most famous equation". He received the 1921 Nobel Prize in Physics for . Born in the German Empire, Einstein moved to Switzerland in 1895, forsaking his German citizenship (as a subject of the Kingdom of Württemberg) the following year. In 1897, at the age of seventeen, he enrolled in the mathematics and physics teaching diploma program at the Swiss ETH Zurich, federal polytechnic school in Zurich, graduating in 1900. He acquired Swiss citizenship a year later, which he kept for the rest of his life, and afterwards secured a permanent position at the Swiss Patent Office in Bern. In 1905, he submitted a successful PhD dissertation to the University of Zurich. In 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]