Pseudo Jacobi Polynomials
In mathematics, the term Pseudo Jacobi polynomials was introduced by Lesky for one of three finite sequences of orthogonal polynomials y. Since they form an orthogonal subset of Routh polynomials it seems consistent to refer to them as Romanovski-Routh polynomials, by analogy with the terms Romanovski-Bessel and Romanovski-Jacobi used by Lesky. As shown by Askey for two other sequencesth is finite sequence orthogonal polynomials of can be expressed in terms of Jacobi polynomials In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) P_n^(x) are a class of Classical orthogonal polynomials, classical orthogonal polynomials. They are orthogonal with respect to the weight (1-x)^\alpha(1+x)^\beta ... of imaginary argument. In following Raposo et al. they are often referred to simply as Romanovski polynomials. References {{reflist Orthogonal polynomials ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ... to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. These are frequently given by the Rodrigues' formula. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by Pafnuty Chebyshev, P. L. Chebyshev and wa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobi Polynomials
In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) P_n^(x) are a class of Classical orthogonal polynomials, classical orthogonal polynomials. They are orthogonal with respect to the weight (1-x)^\alpha(1+x)^\beta on the interval [-1,1]. The Gegenbauer polynomials, and thus also the Legendre polynomials, Legendre, Zernike polynomials, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials. The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi. Definitions Via the hypergeometric function The Jacobi polynomials are defined via the hypergeometric function as follows: :P_n^(z)=\frac\,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac(1-z)\right), where (\alpha+1)_n is Pochhammer symbol, Pochhammer's symbol (for the rising factorial). In this case, the series for the hypergeometric function is finite, therefore one obtains the following equivalent expression: :P_n^ (z) = \frac \sum_^n \frac \left(\frac\right)^m. R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |