HOME





Pseudo-differential Operator
In mathematical analysis a pseudo-differential operator is an extension of the concept of differential operator. Pseudo-differential operators are used extensively in the theory of partial differential equations and quantum field theory, e.g. in mathematical models that include ultrametric pseudo-differential equations in a non-Archimedean space. History The study of pseudo-differential operators began in the mid 1960s with the work of Kohn, Nirenberg, Hörmander, Unterberger and Bokobza. They played an influential role in the second proof of the Atiyah–Singer index theorem via K-theory. Atiyah and Singer thanked Hörmander for assistance with understanding the theory of pseudo-differential operators. Motivation Linear differential operators with constant coefficients Consider a linear differential operator with constant coefficients, : P(D) := \sum_\alpha a_\alpha \, D^\alpha which acts on smooth functions u with compact support in R''n''. This operator can be writt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michael E
SS ''Michael E'' was a cargo ship that was built in 1941. She was the first British catapult aircraft merchant ship (CAM ship): a merchant ship fitted with a rocket catapult to launch a single Hawker Hurricane fighter aircraft to defend a convoy against long-range German bombers. She was sunk on her maiden voyage by a German submarine. Description ''Michael E'' was built by William Hamilton & Co Ltd, Port Glasgow. Launched in 1941, she was completed in May of that year. She was the United Kingdom's first CAM ship, armed with an aircraft catapult on her bow to launch a Hawker Sea Hurricane. The ship was long between perpendiculars ( overall), with a beam of . She had a depth of and a draught of . She was measured at and . She had six corrugated furnaces feeding two single-ended boilers with a combined heating surface of . The boilers fed a 443 nominal horsepower triple-expansion steam engine that had cylinders of , and diameter by stroke. The engine was buil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Operational Calculus
Operational calculus, also known as operational analysis, is a technique by which problems in Mathematical Analysis, analysis, in particular differential equations, are transformed into algebraic problems, usually the problem of solving a polynomial equation. History The idea of representing the processes of calculus, differentiation and integration, as operators has a long history that goes back to Gottfried Wilhelm Leibniz. The mathematician Louis François Antoine Arbogast was one of the first to manipulate these symbols independently of the function to which they were applied. This approach was further developed by Francois-Joseph Servois who developed convenient notations. Servois was followed by a school of British and Irish mathematicians including Charles James Hargreave, George Boole, Bownin, Carmichael, Doukin, Graves, Murphy, William Spottiswoode and Sylvester. Treatises describing the application of operator methods to ordinary and partial differential equations w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oscillatory Integral Operator
In mathematics, in the field of harmonic analysis, an oscillatory integral operator is an integral operator of the form :T_\lambda u(x)=\int_e^ a(x, y) u(y)\,dy, \qquad x\in\R^m, \quad y\in\R^n, where the function ''S''(''x'',''y'') is called the phase of the operator and the function ''a''(''x'',''y'') is called the symbol of the operator. ''λ'' is a parameter. One often considers ''S''(''x'',''y'') to be real-valued and smooth, and ''a''(''x'',''y'') smooth and compactly supported. Usually one is interested in the behavior of ''T''''λ'' for large values of ''λ''. Oscillatory integral operators often appear in many fields of mathematics (analysis, partial differential equations, integral geometry, number theory) and in physics. Properties of oscillatory integral operators have been studied by Elias Stein and his school. Hörmander's theorem The following bound on the ''L''2 → ''L''2 action of oscillatory integral operators (or ''L''2 → ''L''2 operator norm) was obtain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fourier Integral Operator
In mathematical analysis, Fourier integral operators have become an important tool in the theory of partial differential equations. The class of Fourier integral operators contains differential operators as well as classical integral operators as special cases. A Fourier integral operator T is given by: :(Tf)(x)=\int_ e^a(x,\xi)\hat(\xi) \, d\xi where \hat f denotes the Fourier transform of f, a(x,\xi) is a standard symbol which is compactly supported in x and \Phi is real valued and homogeneous of degree 1 in \xi. It is also necessary to require that \det \left(\frac\right)\neq 0 on the support of ''a.'' Under these conditions, if ''a'' is of order zero, it is possible to show that T defines a bounded operator from L^ to L^. Examples One motivation for the study of Fourier integral operators is the solution operator for the initial value problem for the wave operator. Indeed, consider the following problem: : \frac\frac(t,x) = \Delta u(t,x) \quad \mathrm \quad (t,x) \in \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Differential Algebra
In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra. More specifically, ''differential algebra'' refers to the theory introduced by Joseph Ritt in 1950, in which differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with finitely many derivations. A natural example of a differential field is the field of rational functions in one variable over the complex numbers, \mathbb(t), where the derivation is differentiation with respect to t. More generally, every differential e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Singular Integral
In mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator : T(f)(x) = \int K(x,y)f(y) \, dy, whose kernel function ''K'' : R''n''×R''n'' → R is singular along the diagonal ''x'' = ''y''. Specifically, the singularity is such that , ''K''(''x'', ''y''), is of size , ''x'' − ''y'', −''n'' asymptotically as , ''x'' − ''y'',  → 0. Since such integrals may not in general be absolutely integrable, a rigorous definition must define them as the limit of the integral over , ''y'' − ''x'',  > ε as ε → 0, but in practice this is a technicality. Usually further assumptions are required to obtain results such as their boundedness on ''L''''p''(R''n''). The Hilbert transform The archetypal singular integral operator is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Transform
In mathematics, an integral transform is a type of transform that maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''. General form An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a function ''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, that is called the kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Microlocal Analysis
In mathematical analysis, microlocal analysis comprises techniques developed from the 1950s onwards based on Fourier transforms related to the study of variable-coefficients-linear and nonlinear partial differential equations. This includes generalized functions, pseudo-differential operators, wave front sets, Fourier integral operators, oscillatory integral operators, and paradifferential operators. The term ''microlocal'' implies localisation not only with respect to location in the space, but also with respect to cotangent space directions at a given point. This gains in importance on manifolds of dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ... greater than one. See also * Algebraic analysis * Microfunction External linkslecture notes by Richard Melrose F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]