Problems And Theorems In Analysis
   HOME



picture info

Problems And Theorems In Analysis
''Problems and Theorems in Analysis'' () is a two-volume problem book in Mathematical analysis, analysis by George Pólya and Gábor Szegő. Published in 1925, the two volumes are titled (I) ''Series. Integral Calculus. Theory of Functions.''; and (II) ''Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry''. The volumes are highly regarded for the quality of their problems and their method of organisation, not by topic but by method of solution, with a focus on cultivating the student's Problem solving, problem-solving skills. Each volume the contains problems at the beginning and (brief) solutions at the end. As two authors have put it, "there is a general consensus among mathematicians that the two-volume Pólya-Szegő is the best written and most useful problem book in the history of mathematics." Background It was Pólya who had the idea for a comprehensive problem book in analysis first, but he realised he would not be able complete it alone. He de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Problem Book
Problem books are textbooks, usually at advanced undergraduate or post-graduate level, in which the material is organized as a series of problems, each with a complete solution given. Problem books are distinct from workbooks in that the problems are designed as a primary means of teaching, not merely for practice on material learned elsewhere. Problem books are found most often in the mathematical and physical sciences; they have a strong tradition within the Russian educational system. Sidney B. Cahn and Boris E. Nadgorny (1994) ''A Guide to Physics Problems'', Plenum, vol. 2, p. vii (Preface). At some American universities, problem books are associated with departmental preliminary or candidacy examinations for the Doctor of philosophy, Ph.D. degree. Such books may exemplify decades of actual examinations and, when published, are studied by graduate students at other institutions. Other problem books are specific to graduate fields of study. While certain problem books are col ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathematics), matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as line (geometry), lines, plane (geometry), planes and rotation (mathematics), rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to Space of functions, function spaces. Linear algebra is also used in most sciences and fields of engineering because it allows mathematical model, modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


How To Solve It
''How to Solve It'' (1945) is a small volume by mathematician George Pólya, describing methods of problem solving. This book has remained in print continually since 1945. Four principles ''How to Solve It'' suggests the following steps when solving a mathematical problem: # First, you have to ''understand the problem''. # After understanding, ''make a plan''. pp. 8–12 # ''Carry out the plan''. # ''Look back'' on your work. How could it be better? If this technique fails, Pólya advises: "If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?" First principle: Understand the problem "Understand the problem" is often neglected as being obvious and is not even mentioned in many mathematics classes. Yet students are often stymied in their efforts to solve it, simply because they don't understand it fully, or even in part. In order to remedy this oversight, Pólya taught teachers how to p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arthur Hirsch
Arthur Hirsch (1866–1948) was a German mathematician. Life and work Hirsch completed his schooling in Königsberg in 1882 and then studied mathematics and physics in the universities of Berlin and Königsberg. Among his teachers at Königsberg were David Hilbert and Adolf Hurwitz. In 1892 he received a doctorate from Königsberg for a thesis about linear differential equations. The following year, he took his docent habilitation at Polytechnikum of Zurich, where he was, successively, assistant professor from 1893, titular professor from 1897 and ordinary professor from 1903 until his retirement in 1936. The work of Hirsch is primarily on differential equations and hypergeometric functions. He published seven papers about it in ''Mathematische Annalen''. Hirsch was a member of the Swiss Mathematical Society The Swiss Mathematical Society, SMS (, SMG; ), founded in Basel on 4 September 1910, is the national mathematical society of Switzerland. It is a member of the Euro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Charles Loewner
Charles Loewner (29 May 1893 – 8 January 1968) was an American mathematician. His name was Karel Löwner in Czech and Karl Löwner in German. Early life and career Karl Loewner was born into a Jewish family in Lany, about 30 km from Prague, where his father Sigmund Löwner was a store owner. Loewner received his Ph.D. from the University of Prague in 1917 under supervision of Georg Pick. One of his central mathematical contributions is the proof of the Bieberbach conjecture in the first highly nontrivial case of the third coefficient. The technique he introduced, the Loewner differential equation, has had far-reaching implications in geometric function theory; it was used in the final solution of the Bieberbach conjecture by Louis de Branges in 1985. Loewner worked at the University of Berlin, University of Prague, University of Louisville, Brown University, Syracuse University and eventually at Stanford University. His students include Lipman Bers, Roger Horn, A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to the sum function given by its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable, that is, '' holomorphic functions''. The concept can be extended to functions of several complex variables. Complex analysis is contrasted with real analysis, which dea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Functions
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if for every x_0 in its domain, its Taylor series about x_0 converges to the function in some neighborhood of x_0 . This is stronger than merely being infinitely differentiable at x_0 , and therefore having a well-defined Taylor series; the Fabius function provides an example of a function that is infinitely differentiable but not analytic. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \cdots in which the coefficients a_0, a_1, \dots ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal In mathematics, orthogonality (mathematics), orthogonality is the generalization of the geometric notion of ''perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendic ... to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. These are frequently given by the Rodrigues' formula. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by Pafnuty Chebyshev, P. L. Chebyshev and wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trigonometric Polynomials
In the mathematical subfields of numerical analysis and mathematical analysis, a trigonometric polynomial is a finite linear combination of functions sin(''nx'') and cos(''nx'') with ''n'' taking on the values of one or more natural numbers. The coefficients may be taken as real numbers, for real-valued functions. For complex coefficients, there is no difference between such a function and a finite Fourier series. Trigonometric polynomials are widely used, for example in trigonometric interpolation applied to the interpolation of periodic functions. They are used also in the discrete Fourier transform. The term ''trigonometric polynomial'' for the real-valued case can be seen as using the analogy: the functions sin(''nx'') and cos(''nx'') are similar to the monomial basis for polynomials. In the complex case the trigonometric polynomials are spanned by the positive and negative powers of e^, i.e., Laurent polynomials in z under the change of variables x \mapsto z := e^. Defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]