HOME





Prime Zeta Function
In mathematics, the prime zeta function is an analogue of the Riemann zeta function, studied by . It is defined as the following infinite series, which converges for \Re(s) > 1: :P(s)=\sum_ \frac=\frac+\frac+\frac+\frac+\frac+\cdots. Properties The Euler product for the Riemann zeta function ''ζ''(''s'') implies that : \log\zeta(s)=\sum_ \frac n which by Möbius inversion gives :P(s)=\sum_ \mu(n)\frac n When ''s'' goes to 1, we have P(s)\sim \log\zeta(s)\sim\log\left(\frac \right). This is used in the definition of Dirichlet density. This gives the continuation of ''P''(''s'') to \Re(s) > 0, with an infinite number of logarithmic singularities at points ''s'' where ''ns'' is a pole (only ''ns'' = 1 when ''n'' is a squarefree number greater than or equal to 1), or zero of the Riemann zeta function ''ζ''(.). The line \Re(s) = 0 is a natural boundary as the singularities cluster near all points of this line. If one defines a sequence :a_n=\prod_ \frac=\prod_ \fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Factor
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divergence Of The Sum Of The Reciprocals Of The Primes
The sum of the reciprocals of all prime numbers diverges; that is: \sum_\frac1p = \frac12 + \frac13 + \frac15 + \frac17 + \frac1 + \frac1 + \frac1 + \cdots = \infty This was proved by Leonhard Euler in 1737, and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series). There are a variety of proofs of Euler's result, including a lower bound for the partial sums stating that \sum_\frac1p \ge \log \log (n+1) - \log\frac6 for all natural numbers . The double natural logarithm () indicates that the divergence might be very slow, which is indeed the case. See Meissel–Mertens constant. The harmonic series First, we will describe how Euler originally discovered the result. He was considering the harmonic series \sum_^\infty \frac = 1 + \frac + \frac + \frac + \cdots = \infty He had already used the following " product formu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet L-function
In mathematics, a Dirichlet L-series is a function of the form :L(s,\chi) = \sum_^\infty \frac. where \chi is a Dirichlet character and s a complex variable with real part greater than 1 . It is a special case of a Dirichlet series. By analytic continuation, it can be extended to a meromorphic function on the whole complex plane, and is then called a Dirichlet L -function and also denoted L ( s , \chi) . These functions are named after Peter Gustav Lejeune Dirichlet who introduced them in to prove the Dirichlet's theorem on arithmetic progressions, theorem on primes in arithmetic progressions that also bears his name. In the course of the proof, Dirichlet shows that L ( s , \chi) is non-zero at s = 1 . Moreover, if \chi is principal, then the corresponding Dirichlet L -function has a simple pole at s = 1 . Otherwise, the L -function is entire function, entire. Euler product Since a Dirichlet character \chi is completely multiplicative, its L -function can also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Newton%27s Identities
In mathematics, Newton's identities, also known as the Girard–Newton formulae, give relations between two types of symmetric polynomials, namely between power sums and elementary symmetric polynomials. Evaluated at the roots of a monic polynomial ''P'' in one variable, they allow expressing the sums of the ''k''-th powers of all roots of ''P'' (counted with their multiplicity) in terms of the coefficients of ''P'', without actually finding those roots. These identities were found by Isaac Newton around 1666, apparently in ignorance of earlier work (1629) by Albert Girard. They have applications in many areas of mathematics, including Galois theory, invariant theory, group theory, combinatorics, as well as further applications outside mathematics, including general relativity. Mathematical statement Formulation in terms of symmetric polynomials Let ''x''1, ..., ''x''''n'' be variables, denote for ''k'' ≥ 1 by ''p''''k''(''x''1, ..., ''x''''n'') the ''k''-th p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Numbers
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always produ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Homogeneous Symmetric Polynomial
In mathematics, specifically in algebraic combinatorics and commutative algebra, the complete homogeneous symmetric polynomials are a specific kind of symmetric polynomials. Every symmetric polynomial can be expressed as a polynomial expression in complete homogeneous symmetric polynomials. Definition The complete homogeneous symmetric polynomial of degree in variables , written for , is the sum of all monomials of total degree in the variables. Formally, :h_k (X_1, X_2, \dots,X_n) = \sum_ X_ X_ \cdots X_. The formula can also be written as: :h_k (X_1, X_2, \dots,X_n) = \sum_ X_^ X_^ \cdots X_^. Indeed, is just the multiplicity of in the sequence . The first few of these polynomials are :\begin h_0 (X_1, X_2, \dots,X_n) &= 1, \\ 0pxh_1 (X_1, X_2, \dots,X_n) &= \sum_ X_j, \\ h_2 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k, \\ h_3 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k X_l. \end Thus, for each nonnegative integer , there exists exactly one complete homogeneous symmetric polynomi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prime Omega Function
In number theory, the prime omega functions \omega(n) and \Omega(n) count the number of prime factors of a natural number n. The number of ''distinct'' prime factors is assigned to \omega(n) (little omega), while \Omega(n) (big omega) counts the ''total'' number of prime factors with multiplicity (see arithmetic function). That is, if we have a prime factorization of n of the form n = p_1^ p_2^ \cdots p_k^ for distinct primes p_i (1 \leq i \leq k), then the prime omega functions are given by \omega(n) = k and \Omega(n) = \alpha_1 + \alpha_2 + \cdots + \alpha_k. These prime-factor-counting functions have many important number theoretic relations. Properties and relations The function \omega(n) is additive and \Omega(n) is completely additive. Little omega has the formula \omega(n)=\sum_ 1, where notation indicates that the sum is taken over all primes that divide , without multiplicity. For example, \omega(12)=\omega(2^2 3)=2. Big omega has the formulas \Omega(n) =\sum_ 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Divergence Of The Sum Of The Reciprocals Of The Primes
The sum of the reciprocals of all prime numbers diverges; that is: \sum_\frac1p = \frac12 + \frac13 + \frac15 + \frac17 + \frac1 + \frac1 + \frac1 + \cdots = \infty This was proved by Leonhard Euler in 1737, and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series). There are a variety of proofs of Euler's result, including a lower bound for the partial sums stating that \sum_\frac1p \ge \log \log (n+1) - \log\frac6 for all natural numbers . The double natural logarithm () indicates that the divergence might be very slow, which is indeed the case. See Meissel–Mertens constant. The harmonic series First, we will describe how Euler originally discovered the result. He was considering the harmonic series \sum_^\infty \frac = 1 + \frac + \frac + \frac + \cdots = \infty He had already used the following " product formu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Zeta Function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that many mathematicians consider th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

OEIS
The On-Line Encyclopedia of Integer Sequences (OEIS) is an online database of integer sequences. It was created and maintained by Neil Sloane while researching at AT&T Labs. He transferred the intellectual property and hosting of the OEIS to the OEIS Foundation in 2009, and is its chairman. OEIS records information on integer sequences of interest to both professional and amateur mathematicians, and is widely cited. , it contains over 370,000 sequences, and is growing by approximately 30 entries per day. Each entry contains the leading terms of the sequence, keywords, mathematical motivations, literature links, and more, including the option to generate a graph or play a musical representation of the sequence. The database is searchable by keyword, by subsequence, or by any of 16 fields. There is also an advanced search function called SuperSeeker which runs a large number of different algorithms to identify sequences related to the input. History Neil Sloane started coll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lucas Number
The Lucas sequence is an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci sequence. Individual numbers in the Lucas sequence are known as Lucas numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences. The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio. The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between. The first few Lucas numbers are : 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]