Prefix Order
In mathematics, especially order theory, a prefix ordered set generalizes the intuitive concept of a tree by introducing the possibility of continuous progress and continuous branching. Natural prefix orders often occur when considering dynamical systems as a set of functions from ''time'' (a totally-ordered set) to some phase space. In this case, the elements of the set are usually referred to as ''executions'' of the system. The name ''prefix order'' stems from the prefix order on words, which is a special kind of substring relation and, because of its discrete character, a tree. Formal definition A prefix order is a binary relation "≤" over a set ''P'' which is antisymmetric, transitive, reflexive, and downward total, i.e., for all ''a'', ''b'', and ''c'' in ''P'', we have that: *''a ≤ a'' (reflexivity); *if ''a ≤ b'' and ''b ≤ a'' then ''a'' = ''b'' (antisymmetry); *if ''a ≤ b'' and ''b ≤ c'' then ''a ≤ c'' (transitivity); *if ''a ≤ c'' and ''b ≤ c'' t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order-preserving Function
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory. In calculus and analysis In calculus, a function f defined on a subset of the real numbers with real values is called ''monotonic'' if it is either entirely non-decreasing, or entirely non-increasing. That is, as per Fig. 1, a function that increases monotonically does not exclusively have to increase, it simply must not decrease. A function is termed ''monotonically increasing'' (also ''increasing'' or ''non-decreasing'') if for all x and y such that x \leq y one has f\!\left(x\right) \leq f\!\left(y\right), so f preserves the order (see Figure 1). Likewise, a function is called ''monotonically decreasing'' (also ''decreasing'' or ''non-increasing'') if, whenever x \leq y, then f\!\left(x\right) \geq f\!\left(y\right), so it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynamical Systems
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, fluid dynamics, the flow of water in a pipe, the Brownian motion, random motion of particles in the air, and population dynamics, the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real number, real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a Set (mathematics), set, without the need of a Differentiability, smooth space-time structure defined on it. At any given time, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order Isomorphism
In the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be considered to be "essentially the same" in the sense that either of the orders can be obtained from the other just by renaming of elements. Two strictly weaker notions that relate to order isomorphisms are order embeddings and Galois connections. The idea of isomorphism can be understood for finite orders in terms of Hasse diagrams. Two finite orders are isomorphic exactly when a single Hasse diagram ( up to relabeling of its elements) expresses them both, in other words when every Hasse diagram of either can be converted to a Hasse diagram of the other by simply relabeling the vertices. Definition Formally, given two posets (S,\le_S) and (T,\le_T), an order isomorphism from (S,\le_S) to (T,\le_T) is a bijective function f from S to T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Disjoint Union
In mathematics, the disjoint union (or discriminated union) A \sqcup B of the sets and is the set formed from the elements of and labelled (indexed) with the name of the set from which they come. So, an element belonging to both and appears twice in the disjoint union, with two different labels. A disjoint union of an indexed family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injective function, injection of each A_i into A, such that the image (mathematics), images of these injections form a Partition (set theory), partition of A (that is, each element of A belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their Union (set theory), union. In category theory, the disjoint union is the coproduct of the category of sets, and thus defined up to a bijection. In this context, the notation \coprod_ A_i is often used. The disjoint union of two sets A and B is written with infix notation as A \sq ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prefix Closed
In computer science, in the area of formal language theory, frequent use is made of a variety of string functions; however, the notation used is different from that used for computer programming, and some commonly used functions in the theoretical realm are rarely used when programming. This article defines some of these basic terms. Strings and languages A string is a finite sequence of characters. The empty string is denoted by \varepsilon. The concatenation of two string s and t is denoted by s \cdot t, or shorter by s t. Concatenating with the empty string makes no difference: s \cdot \varepsilon = s = \varepsilon \cdot s. Concatenation of strings is associative: s \cdot (t \cdot u) = (s \cdot t) \cdot u. For example, (\langle b \rangle \cdot \langle l \rangle) \cdot (\varepsilon \cdot \langle ah \rangle) = \langle bl \rangle \cdot \langle ah \rangle = \langle blah \rangle. A language is a finite or infinite set of strings. Besides the usual set operations like union, inters ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Range Of A Function
In mathematics, the range of a function may refer either to the codomain of the function, or the image of the function. In some cases the codomain and the image of a function are the same set; such a function is called ''surjective'' or ''onto''. For any non-surjective function f: X \to Y, the codomain Y and the image \tilde Y are different; however, a new function can be defined with the original function's image as its codomain, \tilde: X \to \tilde where \tilde(x) = f(x). This new function is surjective. Definitions Given two sets and , a binary relation between and is a function (from to ) if for every element in there is exactly one in such that relates to . The sets and are called the '' domain'' and ''codomain'' of , respectively. The ''image'' of the function is the subset of consisting of only those elements of such that there is at least one in with . Usage As the term "range" can have different meanings, it is considered a good practice to define ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bisimulation
In theoretical computer science a bisimulation is a binary relation between state transition systems, associating systems that behave in the same way in that one system simulates the other and vice versa. Intuitively two systems are bisimilar if they, assuming we view them as playing a ''game'' according to some rules, match each other's moves. In this sense, each of the systems cannot be distinguished from the other by an observer. Formal definition Given a labeled state transition system , where is a set of states, \Lambda is a set of labels and → is a set of labelled transitions (i.e., a subset of S \times \Lambda \times S), a bisimulation is a binary relation R \subseteq S \times S, such that both and its converse R^T are simulations. From this follows that the symmetric closure of a bisimulation is a bisimulation, and that each symmetric simulation is a bisimulation. Thus some authors define bisimulation as a symmetric simulation. Equivalently, is a bisimulatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surjective Function
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a function , the codomain is the image of the function's domain . It is not required that be unique; the function may map one or more elements of to the same element of . The term ''surjective'' and the related terms '' injective'' and '' bijective'' were introduced by Nicolas Bourbaki, a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word '' sur'' means ''over'' or ''above'', and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain. Any function induces a surjection by restricting its codomain to the image of its domain. Every surj ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reflexive Relation
In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations. Etymology The word ''reflexive'' is originally derived from the Medieval Latin ''reflexivus'' ('recoiling' reflex.html" ;"title="f. ''reflex">f. ''reflex'' or 'directed upon itself') (c. 1250 AD) from the classical Latin ''reflexus-'' ('turn away', 'reflection') + ''-īvus'' (suffix). The word entered Early Modern English in the 1580s. The sense of the word meaning 'directed upon itself', as now used in mathematics, surviving mostly by its use in philosophy and grammar (cf. ''Reflexive verb'' and ''Reflexive pronoun''). The first e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems in general (although one usually is also interested in the actual difference of two numbers, which is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |