HOME





Precoding
Precoding is a generalization of beamforming to support multi-stream (or multi-layer) transmission in multi-antenna wireless communications. In conventional single-stream beamforming, the same signal is emitted from each of the transmit antennas with appropriate weighting (phase and gain) such that the signal power is maximized at the receiver output. When the receiver has multiple antennas, single-stream beamforming cannot simultaneously maximize the signal level at all of the receive antennas. In order to maximize the throughput in multiple receive antenna systems, multi-stream transmission is generally required. In point-to-point systems, precoding means that multiple data streams are emitted from the transmit antennas with independent and appropriate weightings such that the link throughput is maximized at the receiver output. In multi-user MIMO, the data streams are intended for different users (known as SDMA) and some measure of the total throughput (e.g., the sum performan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mimo
In radio, multiple-input and multiple-output (MIMO) () is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi 4), IEEE 802.11ac (Wi-Fi 5), HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification. At one time, in wireless the term "MIMO" referred to the use of multiple antennas at the transmitter and the receiver. In modern usage, "MIMO" specifically refers to a class of techniques for sending and receiving more than one data signal simultaneously over the same radio channel by exploiting the difference in signal propagation between different antennas (e.g. due to multipath propagation). Additionally, modern MIMO usage often refer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multi-user MIMO
Multi-user MIMO (MU-MIMO) is a set of multiple-input and multiple-output (MIMO) technologies for multipath wireless communication, in which multiple users or terminals, each radioing over one or more antennas, communicate with one another. In contrast, single-user MIMO (SU-MIMO) involves a single multi-antenna-equipped user or terminal communicating with precisely one other similarly equipped node. Analogous to how OFDMA adds multiple-access capability to OFDM in the cellular-communications realm, MU-MIMO adds multiple-user capability to MIMO in the wireless realm. SDMA,N. JindalMIMO Broadcast Channels with Finite Rate Feedback IEEE Transactions on Information Theory, vol. 52, no. 11, pp. 5045–5059, 2006.D. Gesbert, M. Kountouris, R.W. Heath Jr., C.-B. Chae, and T. SälzerShifting the MIMO Paradigm IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 36-46, 2007.R. Tweg, R. Alpert, H. Leizerovich, A. Steiner, E. Levitan, E. Offir-Arad, A.B. Guy, B. Zickel, A. Aviram, A. Friema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MIMO
In radio, multiple-input and multiple-output (MIMO) () is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi 4), IEEE 802.11ac (Wi-Fi 5), HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification. At one time, in wireless the term "MIMO" referred to the use of multiple antennas at the transmitter and the receiver. In modern usage, "MIMO" specifically refers to a class of techniques for sending and receiving more than one data signal simultaneously over the same radio channel by exploiting the difference in signal propagation between different antennas (e.g. due to multipath propagation). Additionally, modern MIMO usage often refer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spatial Correlation
In wireless communication, spatial correlation is the correlation between a signal's spatial direction and the average received signal gain. Theoretically, the performance of wireless communication systems can be improved by having multiple antennas at the transmitter and the receiver. The idea is that if the propagation channels between each pair of transmit and receive antennas are statistically independent and identically distributed, then multiple independent channels with identical characteristics can be created by precoding and be used for either transmitting multiple data streams or increasing the reliability (in terms of bit error rate). In practice, the channels between different antennas are often correlated and therefore the potential multi antenna gains may not always be obtainable. Existence In an ideal communication scenario, there is a line-of-sight path between the transmitter and receiver that represents clear spatial channel characteristics. In urban cell ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beamforming
Beamforming or spatial filtering is a signal processing technique used in sensor arrays for directional signal transmission or reception. This is achieved by combining elements in an antenna array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity. The improvement compared with omnidirectional reception/transmission is known as the directivity of the array. Beamforming can be used for radio or sound waves. It has found numerous applications in radar, sonar, seismology, wireless communications, radio astronomy, acoustics and biomedicine. Adaptive beamforming is used to detect and estimate the signal of interest at the output of a sensor array by means of optimal (e.g. least-squares) spatial filtering and interference rejection. Techniques To change the directionality of the array when ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero-forcing Precoding
Zero-forcing (or null-steering) precoding is a method of spatial signal processing by which a multiple antenna transmitter can null the multiuser interference in a multi-user MIMO wireless communication system. When the channel state information is perfectly known at the transmitter, the zero-forcing precoder is given by the pseudo-inverse of the channel matrix. Zero-forcing has been used in LTE mobile networks. Mathematical description In a multiple antenna downlink system which comprises N_t transmit antenna access points and K single receive antenna users, such that K \leq N_t, the received signal of user k is described as :y_k = \mathbf_k^T \mathbf + n_k, \quad k=1,2, \ldots, K where \mathbf = \sum_^K \sqrt s_i \mathbf_i is the N_t \times 1 vector of transmitted symbols, n_k is the noise signal, \mathbf_k is the N_t \times 1 channel vector and \mathbf_i is some N_t \times 1 linear precoding vector. Here (\cdot)^T is the matrix transpose, \sqrt is the square root of transmit pow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Space–time Trellis Code
Space–time trellis codes (STTCs) are a type of space–time code used in multiple-antenna wireless communications. This scheme transmits multiple, redundant copies of a generalised TCM signal distributed over time and a number of antennas ('space'). These multiple, 'diverse' copies of the data are used by the receiver to attempt to reconstruct the actual transmitted data. For an STC to be used, there must necessarily be multiple ''transmit'' antennas, but only a single ''receive'' antennas is required; nevertheless multiple receive antennas are often used since the performance of the system is improved by the resulting spatial diversity. In contrast to space–time block codes (STBCs), they are able to provide both coding gain and diversity gain and have a better bit-error rate performance. In essence they marry single channel continuous time coding with the signaling protocol being used, and extend that with a multi-antenna framework. However, that also means they are more com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Space–time Code
A space–time code (STC) is a method employed to improve the reliability of data transmission (telecommunications), transmission in wireless, wireless communication systems using multiple transmit antenna (radio), antennas. STCs rely on transmitting multiple, redundancy (information theory), redundant copies of a data stream to the receiver (radio), receiver in the hope that at least some of them may survive the transmission medium, physical path between transmission and reception in a good enough state to allow reliable decoding. Space time codes may be split into two main types: *Space–time trellis codes (STTCs) distribute a convolutional code, trellis code over multiple antennas and multiple time-slots and provide both coding gain and diversity reception, diversity gain. *Space–time block codes (STBCs) act on a block of data at once (similarly to block codes) and also provide diversity reception, diversity gain but doesn't provide coding gain. *Space–time line codes ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cooperative Diversity
Cooperative diversity is a cooperative multiple antenna technique for improving or maximising total network channel capacities for any given set of bandwidths which exploits user diversity by decoding the combined signal of the relayed signal and the direct signal in wireless multihop networks. A conventional single hop system uses direct transmission where a receiver decodes the information only based on the direct signal while regarding the relayed signal as interference, whereas the cooperative diversity considers the other signal as contribution. That is, cooperative diversity decodes the information from the combination of two signals. Hence, it can be seen that cooperative diversity is an antenna diversity that uses distributed antennas belonging to each node in a wireless network. Note that user cooperation is another definition of cooperative diversity. ''User cooperation'' considers an additional fact that each user relays the other user's signal while cooperative diversi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Channel State Information
In wireless communications, channel state information (CSI) is the known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of, for example, scattering, fading, and power decay with distance. The method is called channel estimation. The CSI makes it possible to adapt transmissions to current channel conditions, which is crucial for achieving reliable communication with high data rates in multiantenna systems. CSI needs to be estimated at the receiver and usually quantized and feedback to the transmitter (although reverse-link estimation is possible in time-division duplex (TDD) systems). Therefore, the transmitter and receiver can have different CSI. The CSI at the transmitter and the CSI at the receiver are sometimes referred to as CSIT and CSIR, respectively. Different kinds of channel state information There are basically two levels of CSI, namely instanta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Signal-to-noise Plus Interference
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background Noise (signal processing), noise. SNR is defined as the ratio of signal Power (physics), power to noise power, often expressed in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more signal than noise. SNR is an important parameter that affects the performance and quality of systems that process or transmit signals, such as communication systems, audio systems, radar systems, imaging systems, and data acquisition systems. A high SNR means that the signal is clear and easy to detect or interpret, while a low SNR means that the signal is corrupted or obscured by noise and may be difficult to distinguish or recover. SNR can be improved by various methods, such as increasing the signal strength, reducing the noise level, filtering out unwanted noise, or using error correction techniques. SNR also determines the m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]