Pre-measure
In mathematics, a pre-measure is a set function that is, in some sense, a precursor to a '' bona fide'' measure on a given space. Indeed, one of the fundamental theorems in measure theory states that a pre-measure can be extended to a measure. Definition Let R be a ring of subsets (closed under union and relative complement) of a fixed set X and let \mu_0 : R \to , \infty/math> be a set function. \mu_0 is called a pre-measure if \mu_0(\varnothing) = 0 and, for every countable (or finite) sequence A_1, A_2, \ldots \in R of pairwise disjoint sets whose union lies in R, \mu_0 \left(\bigcup_^\infty A_n\right) = \sum_^\infty \mu_0(A_n). The second property is called \sigma-additivity. Thus, what is missing for a pre-measure to be a measure is that it is not necessarily defined on a sigma-algebra (or a sigma-ring). Carathéodory's extension theorem It turns out that pre-measures give rise quite naturally to outer measure In the mathematical field of measure theory, an oute ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Function
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line \R \cup \, which consists of the real numbers \R and \pm \infty. A set function generally aims to subsets in some way. Measures are typical examples of "measuring" set functions. Therefore, the term "set function" is often used for avoiding confusion between the mathematical meaning of "measure" and its common language meaning. Definitions If \mathcal is a family of sets over \Omega (meaning that \mathcal \subseteq \wp(\Omega) where \wp(\Omega) denotes the powerset) then a is a function \mu with domain \mathcal and codomain \infty, \infty/math> or, sometimes, the codomain is instead some vector space, as with vector measures, complex measures, and projection-valued measures. The domain of a set function may have any number properties; the commonly encountered properties and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bona Fide
In human interactions, good faith () is a sincere intention to be fair, open, and honest, regardless of the outcome of the interaction. Some Latin phrases have lost their literal meaning over centuries, but that is not the case with , which is still widely used and interchangeable with its generally accepted modern-day English translation of ''good faith''. It is an important concept within law and business. The opposed concepts are bad faith, (duplicity) and perfidy (pretense). is a Latin phrase meaning "good faith". Its ablative case is , meaning "in good faith", which is often used in English as an adjective to mean "genuine". While may be translated as "faith", it embraces a range of meanings within a core concept of "reliability", in the sense of a trust between two parties for the potentiality of a relationship. For the ancient Romans, ''bona fides'' was to be assumed by both sides, with implied responsibilities and both legal and religious consequences if broken ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring Of Sets
(The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a Japanese horror media franchise based on the novel series by Koji Suzuki ** ''Ring'' (film), or ''The Ring'', a 1998 Japanese horror film by Hideo Nakata *** ''The Ring'' (2002 film), an American horror film, remake of the 1998 Japanese film ** ''Ring'' (1995 film), a TV film ** ''Rings'' (2005 film), a short film by Jonathan Liebesman ** ''Rings'' (2017 film), an American horror film * "Ring", a season 3 episode of ''Servant'' (TV series) Gaming * ''Ring'' (video game), 1998 * Rings (''Sonic the Hedgehog''), a collectible in ''Sonic the Hedgehog'' games Literature * ''Ring'' (Baxter novel), a 1994 science fiction novel * ''Ring'' (Alexis novel), a 2021 Canadian novel by André Alexis * ''Ring'' (novel series), a Japanese nov ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Union (set Theory)
In set theory, the union (denoted by ∪) of a collection of Set (mathematics), sets is the set of all element (set theory), elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of Zero, zero () sets and it is by definition equal to the empty set. For explanation of the symbols used in this article, refer to the List of mathematical symbols, table of mathematical symbols. Binary union The union of two sets ''A'' and ''B'' is the set of elements which are in ''A'', in ''B'', or in both ''A'' and ''B''. In set-builder notation, : A \cup B = \. For example, if ''A'' = and ''B'' = then ''A'' ∪ ''B'' = . A more elaborate example (involving two infinite sets) is: : ''A'' = : ''B'' = : A \cup B = \ As another example, the number 9 is ''not'' contained in the union of the set of prime numbers and the set of even numbers , because 9 is neither prime nor even. Sets cannot ha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relative Complement
In set theory, the complement of a set , often denoted by A^c (or ), is the set of elements not in . When all elements in the universe, i.e. all elements under consideration, are considered to be members of a given set , the absolute complement of is the set of elements in that are not in . The relative complement of with respect to a set , also termed the set difference of and , written B \setminus A, is the set of elements in that are not in . Absolute complement Definition If is a set, then the absolute complement of (or simply the complement of ) is the set of elements not in (within a larger set that is implicitly defined). In other words, let be a set that contains all the elements under study; if there is no need to mention , either because it has been previously specified, or it is obvious and unique, then the absolute complement of is the relative complement of in : A^c= U \setminus A = \. The absolute complement of is usually denoted by A^c. Other ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Countable Set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said to be countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as def ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pairwise Disjoint
In set theory in mathematics and Logic#Formal logic, formal logic, two Set (mathematics), sets are said to be disjoint sets if they have no element (mathematics), element in common. Equivalently, two disjoint sets are sets whose intersection (set theory), intersection is the empty set.. For example, and are ''disjoint sets,'' while and are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint. Generalizations This definition of disjoint sets can be extended to family of sets, families of sets and to indexed family, indexed families of sets. By definition, a collection of sets is called a ''family of sets'' (such as the power set, for example). In some sources this is a set of sets, while other sources allow it to be a multiset of sets, with some sets repeated. An \left(A_i\right)_, is by definition a set-valued Function (mathematics), function (that is, it is a function that assigns a set A_i to every ele ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sigma Additivity
In mathematics, an additive set function is a function \mu mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, \mu(A \cup B) = \mu(A) + \mu(B). If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of ''k'' disjoint sets (where ''k'' is a finite number) equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely additive set function (the terms are equivalent). However, a finitely additive set function might not have the additivity property for a union of an ''infinite'' number of sets. A σ-additive set function is a function that has the additivity property even for countably infinite many sets, that is, \mu\left(\bigcup_^\infty A_n\right) = \sum_^\infty \mu(A_n). Additivity and sigma-additivity are particularly important properties of measures. They ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sigma-ring
In mathematics, a nonempty collection of sets is called a -ring (pronounced ''sigma-ring'') if it is closed under countable union and relative complementation. Formal definition Let \mathcal be a nonempty collection of sets. Then \mathcal is a -ring if: # Closed under countable unions: \bigcup_^ A_ \in \mathcal if A_ \in \mathcal for all n \in \N # Closed under relative complementation: A \setminus B \in \mathcal if A, B \in \mathcal Properties These two properties imply: \bigcap_^ A_n \in \mathcal whenever A_1, A_2, \ldots are elements of \mathcal. This is because \bigcap_^\infty A_n = A_1 \setminus \bigcup_^\left(A_1 \setminus A_n\right). Every -ring is a δ-ring but there exist δ-rings that are not -rings. Similar concepts If the first property is weakened to closure under finite union (that is, A \cup B \in \mathcal whenever A, B \in \mathcal) but not countable union, then \mathcal is a ring but not a -ring. Uses -rings can be used instead of -fields ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |