HOME





Potassium Fulminate
Potassium fulminate is the potassium salt of the fulminate ion. Its only use, aside from chemical demonstrations, is in the percussion caps for some early rifles. Usually prepared by reacting a potassium amalgam with mercury fulminate, it is much less sensitive due to the ionic bond between potassium and carbon, unlike the covalent bond between mercury and carbon. See also * List of explosives * Fulminic acid * Fulminate * Silver fulminate * Mercury(II) fulminate * Potassium cyanate Potassium cyanate is an inorganic compound with the chemical formula, formula KOCN (sometimes denoted KCNO). It is a colourless solid. It is used to prepare many other compounds including useful herbicide. Worldwide production of the potassium an ... References {{Potassium compounds Potassium compounds Fulminates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Potassium
Potassium is a chemical element; it has Symbol (chemistry), symbol K (from Neo-Latin ) and atomic number19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to form flaky white potassium peroxide in only seconds of exposure. It was first isolated from potash, the ashes of plants, from which its name derives. In the periodic table, potassium is one of the alkali metals, all of which have a single valence electron in the outer electron shell, which is easily removed to create cation, an ion with a positive charge (which combines with anions to form salts). In nature, potassium occurs only in ionic salts. Elemental potassium reacts vigorously with water, generating sufficient heat to ignite hydrogen emitted in the reaction, and burning with a lilac-flame color, colored flame. It is found dissolved in seawater (which is 0.04% potassium by weight), and occurs in many minerals such as orthoclase, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Covalent Bond
A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding. For many molecules, the sharing of electrons allows each atom to attain the equivalent of a full valence shell, corresponding to a stable electronic configuration. In organic chemistry, covalent bonding is much more common than ionic bonding. Covalent bonding also includes many kinds of interactions, including σ-bonding, π-bonding, metal-to-metal bonding, agostic interactions, bent bonds, three-center two-electron bonds and three-center four-electron bonds. The term "covalence" was introduced by Irving Langmuir in 1919, with Nevil Sidgwick using "co-valent link" in the 1920s. Merriam-Webster dates the specific phrase ''covalent bond'' to 1939, recognizing its first known ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Potassium Cyanate
Potassium cyanate is an inorganic compound with the chemical formula, formula KOCN (sometimes denoted KCNO). It is a colourless solid. It is used to prepare many other compounds including useful herbicide. Worldwide production of the potassium and sodium salts was 20,000 tons in 2006.Peter M. Schalke1, "Cyanates, Inorganic Salts" Ullmann's Encyclopedia of Industrial Chemistry2006, Wiley-VCH, Weinheim. . Article Online Posting Date: July 15, 2006 Structure and bonding The cyanate anion is isoelectronic with carbon dioxide and with the azide anion, being linear. The C-N distance is 121 pm, about 5 pm longer than for cyanide. Potassium cyanate is isostructural with potassium azide. Uses The potassium and sodium salts can be used interchangeably for the majority of applications. Potassium cyanate is often preferred to the sodium salt, which is less soluble in water and less readily available in pure form. Potassium cyanate is used as a basic raw material for various org ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mercury(II) Fulminate
Mercury(II) fulminate, or Hg(CNO)2, is a primary explosive. It is highly sensitive to friction, heat and shock and is mainly used as a trigger for other explosives in percussion caps and detonators. Mercury(II) cyanate, though its chemical formula is identical, has a different atomic arrangement, making the cyanate and fulminate anionic isomers. First used as a priming composition in small copper caps beginning in the 1820s, mercury fulminate quickly replaced flints as a means to ignite black powder charges in muzzle-loading firearms. Later, during the late 19th century and most of the 20th century, mercury fulminate became widely used in primers for self-contained rifle and pistol ammunition; it was the only practical detonator for firing projectiles until the early 20th century. Mercury fulminate has the distinct advantage over potassium chlorate of being non-corrosive, but it is known to weaken with time, by decomposing into its constituent elements. The reduced mer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Silver Fulminate
Silver fulminate (AgCNO) is the highly explosive silver salt of fulminic acid. Silver fulminate is a primary explosive, but has limited use as such due to its extreme sensitivity to impact, heat, pressure, and electricity. The compound becomes progressively sensitive as it is aggregated, even in small amounts; the touch of a falling feather, the impact of a single water droplet, or a small static discharge are all capable of explosively detonating an unconfined pile of silver fulminate no larger than a dime and no heavier than a few milligrams. Aggregating larger quantities is impossible, due to the compound's tendency to self-detonate under its own weight. Silver fulminate was first prepared in 1800 by Edward Charles Howard in his research project to prepare a large variety of fulminates. Along with mercury fulminate, it is the only fulminate stable enough for commercial use. Detonators using silver fulminate were used to initiate picric acid in 1885, but since have been ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fulminate
Fulminates are chemical compounds which include the fulminate ion (). The fulminate ion is a pseudohalic ion because its charge and reactivity are similar to those of the halogens. The name is derived from the Latin ''fulminātus'', meaning to explode like lightning, and reflects that fulminate salts are friction-sensitive explosives due to the instability of the ion. The best known is mercury(II) fulminate, which has been used as a primary explosive in detonators. Fulminates can be formed from metals, such as silver and mercury, dissolved in nitric acid, and reacted with ethanol. The weak single nitrogen-oxygen bond is responsible for their instability. Nitrogen very easily forms a stable triple bond to another nitrogen atom, forming nitrogen gas. Historical notes Fulminates were discovered by Edward Charles Howard in 1800. The use of fulminates for firearms was first demonstrated by a Scottish minister, Alexander John Forsyth, who patented his scent-bottle lock in 1807; th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fulminic Acid
Fulminic acid is an acid with the formula HCNO, more specifically . It is an isomer of isocyanic acid () and of its elusive tautomer, cyanic acid (), and also of isofulminic acid (). Fulminate is the anion of any of its salts. For historical reasons, the fulminate functional group is understood to be as in isofulminic acid; whereas the group is called nitrile oxide. History This chemical was known since the early 1800s through its salts and via the products of reactions in which it was proposed to exist, but the acid itself was not detected until 1966. Structure Fulminic acid was long believed to have a structure of H–O–N+≡C−. It wasn't until the 1966 isolation and analysis of a pure sample of fulminic acid that this structural idea was conclusively disproven. The chemical that actually has that structure, isofulminic acid (a tautomer of the actual fulminic acid structure) was eventually detected in 1988. The structure of the molecule has been determined by m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Explosives
An explosive (or explosive material) is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances. The potential energy stored in an explosive material may, for example, be: * chemical energy, such as nitroglycerin or grain dust * pressurized gas, such as a gas cylinder, aerosol can, or boiling liquid expanding vapor explosion * nuclear energy, such as in the fissile isotopes uranium-235 and plutonium-239 Explosive materials may be categorized by the speed at which they expand. Materials that detonate (the front of the chemical reaction moves faster through the material than the speed of sound) are said to be "high explosives" and materials that deflagrate are said to be " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mercury (element)
Mercury is a chemical element; it has Symbol (chemistry), symbol Hg and atomic number 80. It is commonly known as quicksilver. A Heavy metal element, heavy, silvery d-block element, mercury is the only metallic element that is known to be liquid at standard temperature and pressure; the only other element that is liquid under these conditions is the halogen bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature. Mercury occurs in deposits throughout the world mostly as cinnabar (mercuric sulfide). The red pigment vermilion is obtained by Mill (grinding), grinding natural cinnabar or synthetic mercuric sulfide. Exposure to mercury and mercury-containing organic compounds is toxic to the nervous system, immune system and kidneys of humans and other animals; mercury poisoning can result from exposure to water-soluble forms of mercury (such as mercuric chloride or methylmercury) either directly or through mechanisms of biomagnification. Mercu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 electrons. It belongs to group 14 of the periodic table. Carbon makes up about 0.025 percent of Earth's crust. Three Isotopes of carbon, isotopes occur naturally, carbon-12, C and carbon-13, C being stable, while carbon-14, C is a radionuclide, decaying with a half-life of 5,700 years. Carbon is one of the timeline of chemical element discoveries#Pre-modern and early modern discoveries, few elements known since antiquity. Carbon is the 15th abundance of elements in Earth's crust, most abundant element in the Earth's crust, and the abundance of the chemical elements, fourth most abundant element in the universe by mass after hydrogen, helium, and oxygen. Carbon's abundance, its unique diversity of organic compounds, and its unusual abi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Salt (chemistry)
In chemistry, a salt or ionic compound is a chemical compound consisting of an assembly of positively charged ions ( cations) and negatively charged ions ( anions), which results in a compound with no net electric charge (electrically neutral). The constituent ions are held together by electrostatic forces termed ionic bonds. The component ions in a salt can be either inorganic, such as chloride (Cl−), or organic, such as acetate (). Each ion can be either monatomic, such as sodium (Na+) and chloride (Cl−) in sodium chloride, or polyatomic, such as ammonium () and carbonate () ions in ammonium carbonate. Salts containing basic ions hydroxide (OH−) or oxide (O2−) are classified as bases, such as sodium hydroxide and potassium oxide. Individual ions within a salt usually have multiple near neighbours, so they are not considered to be part of molecules, but instead part of a continuous three-dimensional network. Salts usually form crystalline structures ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ionic Bond
Ionic bonding is a type of chemical bond A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons a ...ing that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compounds. It is one of the main types of bonding, along with covalent bonding and metallic bonding. Ions are atoms (or groups of atoms) with an electrostatic charge. Atoms that gain electrons make negatively charged ions (called anions). Atoms that lose electrons make positively charged ions (called cations). This transfer of electrons is known as electrovalence in contrast to covalent bond, covalence. In the simplest case, the cation is a metal atom and the anion is a Nonmetal (chemistry), nonmetal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]