Plant Growth Analysis
Plant growth analysis refers to a set of concepts and equations by which changes in size of plants over time can be summarised and dissected in component variables. It is often applied in the analysis of growth of individual plants, but can also be used in a situation where crop growth is followed over time. Absolute size In comparing different treatments, genotypes or species, the simplest type of growth analysis is to evaluate size of plants after a certain period of growth, typically from the time of germination. In plant biology, size is often measured as dry mass of whole plants (M), or the above-ground part of it. In high-throughput phenotyping platforms, the amount of green pixels as derived from photographs taken from plants from various directions is often the variable that is used to estimate plant size. Absolute growth rate (AGR) In the case that plant size was determined at more than one occasion, the increase in size over a given time period can be determined. The Abso ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plant
Plants are the eukaryotes that form the Kingdom (biology), kingdom Plantae; they are predominantly Photosynthesis, photosynthetic. This means that they obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with cyanobacteria to produce sugars from carbon dioxide and water, using the green pigment chlorophyll. Exceptions are parasitic plants that have lost the genes for chlorophyll and photosynthesis, and obtain their energy from other plants or fungi. Most plants are multicellular organism, multicellular, except for some green algae. Historically, as in Aristotle's biology, the plant kingdom encompassed all living things that were not animals, and included algae and fungi. Definitions have narrowed since then; current definitions exclude fungi and some of the algae. By the definition used in this article, plants form the clade Viridiplantae (green plants), which consists of the green algae and the embryophytes or land plants (hornworts, liverworts ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Equation
In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coefficients may be considered as parameters of the equation and may be arbitrary expressions, provided they do not contain any of the variables. To yield a meaningful equation, the coefficients a_1, \ldots, a_n are required to not all be zero. Alternatively, a linear equation can be obtained by equating to zero a linear polynomial over some field, from which the coefficients are taken. The solutions of such an equation are the values that, when substituted for the unknowns, make the equality true. In the case of just one variable, there is exactly one solution (provided that a_1\ne 0). Often, the term ''linear equation'' refers implicitly to this particular case, in which the variable is sensibly called the ''unknown''. In the case of two ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relative Growth Rate
Relative growth rate (RGR) is growth rate relative to size - that is, a rate of growth per unit time, as a proportion of its size at that moment in time. It is also called the exponential growth rate, or the continuous growth rate. Rationale RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations, if S is the current size, and \frac its growth rate, then relative growth rate is :RGR=\frac\frac. If the RGR is constant, i.e., :\frac\frac = k, a solution to this equation is :S(t) = S_0\exp(k\cdot t) Where: *S(t) is the final size at time (t). *S0 is the initial size. *k is the relative growth rate. A closely related concept is doubling time. Calculations In the simplest case of observations at two time points, RGR is calculated using the following equation: :RGR \ = \ , where: \ln = natural logarithm t_1 = time one (e.g. in days ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leaf Area Index
Leaf area index (LAI) is a dimensionless quantity that characterizes plant Canopy (forest), canopies. It is defined as the one-sided green leaf area per unit ground surface area (''LAI = leaf area / ground area, m2 / m2'') in Broad-leaved tree, broadleaf Canopy (forest), canopies. In conifers, three definitions for LAI have been used: *Half of the total needle surface area per unit ground surface area *Projected (or one-sided, in accordance the definition for broadleaf canopies) needle area per unit ground area *Total needle surface area per unit ground area The definition “half the total leaf area” pertains to biological processes, such as gas exchange, whereas the definition “projected leaf area” was disregarded because the projection of a given area in one direction may differ in another direction when leaves are not flat, thick, or 3D-shaped. Moreover, “ground surface area” is specifically defined as “horizontal ground surface area” to clarify LAI on a sloping ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metabolic Theory Of Ecology
The metabolic theory of ecology (MTE) is the ecological component of the more general Metabolic Scaling Theory and Kleiber's law. It posits that the metabolic rate of organisms is the fundamental biological rate that governs most observed patterns in ecology. MTE is part of a larger set of theory known as metabolic scaling theory that attempts to provide a unified theory for the importance of metabolism in driving pattern and process in biology from the level of cells all the way to the biosphere. MTE is based on an interpretation of the relationships between body size, body temperature, and metabolic rate across all organisms. Small-bodied organisms tend to have higher mass-specific metabolic rates than larger-bodied organisms. Furthermore, organisms that operate at warm temperatures through endothermy or by living in warm environments tend towards higher metabolic rates than organisms that operate at colder temperatures. This pattern is consistent from the unicellular level up t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metabolic Scaling Theory
Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. The word ''metabolism'' can also refer to the sum of all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells, in which case the above described set of reactions within the cells is called intermediary (or intermediate) metabolism. Metabolic reactions may be categorized as ''catabolic''—the ''breaking down'' of compounds (for example, of glucose to pyruvate by cellular respiration); o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Allometric
Allometry (Ancient Greek "other", "measurement") is the study of the relationship of body size to shape, anatomy, physiology and behaviour, first outlined by Otto Snell in 1892, by D'Arcy Thompson in 1917 in ''On Growth and Form'' and by Julian Huxley in 1932. Overview Allometry is a well-known study, particularly in statistical shape analysis for its theoretical developments, as well as in biology for practical applications to the differential growth rates of the parts of a living organism's body. One application is in the study of various insect species (e.g., Dynastes, Hercules beetles), where a small change in overall body size can lead to an enormous and disproportionate increase in the dimensions of appendages such as legs, antennae, or horns. The relationship between the two measured quantities is often expressed as a power law equation (allometric equation) which expresses a remarkable scale symmetry: : y = k x^a, or in a logarithmic form, : \log y = a \log x + \l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' meaning "equal", and μέτρον ''metron'' meaning "measure". If the transformation is from a metric space to itself, it is a kind of geometric transformation known as a motion. Introduction Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional Euclidean space, two geometric figures are congruent if they are related by an isometry; the isometry that relates them is either a rigid motion (translation or rotati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Allometry
Allometry (Ancient Greek "other", "measurement") is the study of the relationship of body size to shape, anatomy, physiology and behaviour, first outlined by Otto Snell in 1892, by D'Arcy Thompson in 1917 in ''On Growth and Form'' and by Julian Huxley in 1932. Overview Allometry is a well-known study, particularly in statistical shape analysis for its theoretical developments, as well as in biology for practical applications to the differential growth rates of the parts of a living organism's body. One application is in the study of various insect species (e.g., Hercules beetles), where a small change in overall body size can lead to an enormous and disproportionate increase in the dimensions of appendages such as legs, antennae, or horns. The relationship between the two measured quantities is often expressed as a power law equation (allometric equation) which expresses a remarkable scale symmetry: : y = k x^a, or in a logarithmic form, : \log y = a \log x + \log k, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Biomass Allocation
Biomass allocation is a concept in plant biology which indicates the relative proportion of plant biomass present in the different organs of a plant. It can also be used for whole plant communities. Rationale Different organs of plants serve different functions. Leaves generally intercept light and fix carbon, roots take up water and nutrients, and stems and petioles display the leaves in a favourable position and transport various compounds within the plant. Depending on environmental conditions, plants may change their investment scheme, to make plants with relatively bigger root systems, or more leaves. This balance has been suggested to be a ‘functional equilibrium’, with plants that experience low water or nutrient supply investing more in roots, and plants growing under low light or CO2 conditions investing more in leaves or stems. Alternatively, it is also known as the 'balanced growth hypothesis', or the 'optimal partitioning theory'. Next to environmentally-induced cha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |