Peak Algebra
In mathematics, the peak algebra is a (non-unital) subalgebra of the group algebra of the symmetric group ''S''''n'', studied by . It consists of the elements of the group algebra of the symmetric group whose coefficients are the same for permutations with the same peaks. (Here a peak of a permutation σ on is an index ''i'' such that σ(''i''–1)σ(''i''+1).) It is a left ideal of the descent algebra. The direct sum of the peak algebras for all ''n'' has a natural structure of a Hopf algebra Hopf is a German surname. Notable people with the surname include: * Eberhard Hopf (1902–1983), Austrian mathematician * Hans Hopf (1916–1993), German tenor * Heinz Hopf (1894–1971), German mathematician * Heinz Hopf (actor) (1934–2001), Sw .... References *{{citation, mr=2001673 , last=Nyman, first= Kathryn L. , title=The peak algebra of the symmetric group , journal=J. Algebraic Combin., volume= 17 , year=2003, issue= 3, pages= 309–322 , doi=10.1023/A:1025000905826, doi-access= ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subalgebra
In mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations. "Algebra", when referring to a structure, often means a vector space or module equipped with an additional bilinear operation. Algebras in universal algebra are far more general: they are a common generalisation of ''all'' algebraic structures. "Subalgebra" can refer to either case. Subalgebras for algebras over a ring or field A subalgebra of an algebra over a commutative ring or field is a vector subspace which is closed under the multiplication of vectors. The restriction of the algebra multiplication makes it an algebra over the same ring or field. This notion also applies to most specializations, where the multiplication must satisfy additional properties, e.g. to associative algebras or to Lie algebras. Only for unital algebras is there a stronger notion, of unital subalgebra, for which it is also required that the unit of the subalgebra be the u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring. If the ring is commutative then the group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring. A group algebra over a field has a further structure of a Hopf algebra; in this case, it is thus called a group Hopf algebra. The apparatus of group rings is especially useful in the theory of group representations. Definition Let ''G'' be a group, written multiplicatively, and let ''R'' be a ring. The group ring ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \mathrm_n defined over a finite set of n symbols consists of the permutations that can be performed on the n symbols. Since there are n! (n factorial) such permutation operations, the order (number of elements) of the symmetric group \mathrm_n is n!. Although symmetric groups can be defined on infinite sets, this article focuses on the finite symmetric groups: their applications, their elements, their conjugacy classes, a finite presentation, their subgroups, their automorphism groups, and their representation theory. For the remainder of this article, "symmetric group" will mean a symmetric group on a finite set. The symmetric group is important to diverse areas of mathematics such as Galois theory, invariant theory, the represen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set , namely (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). These are all the possible orderings of this three-element set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory. Permutations are used in almost every branch of mathematics, and in many other fields of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Descent Algebra
In algebra, Solomon's descent algebra of a Coxeter group is a subalgebra of the integral group ring of the Coxeter group, introduced by . The descent algebra of the symmetric group In the special case of the symmetric group ''S''''n'', the descent algebra is given by the elements of the group ring such that permutations with the same descent set have the same coefficients. (The descent set of a permutation σ consists of the indices ''i'' such that σ(''i'') > σ(''i''+1).) The descent algebra of the symmetric group ''S''''n'' has dimension 2''n-1''. It contains the peak algebra In mathematics, the peak algebra is a (non-unital) subalgebra of the group algebra of the symmetric group ''S'n'', studied by . It consists of the elements of the group algebra of the symmetric group whose coefficients are the same for permutati ... as a left ideal. References * Reflection groups {{group-theory-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Direct Sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, we define the sum (a, b) + (c, d) to be (a + c, b + d); in other words addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. We can also form direct sums with any finite number of summands, for example A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hopf Algebra
Hopf is a German surname. Notable people with the surname include: * Eberhard Hopf (1902–1983), Austrian mathematician * Hans Hopf (1916–1993), German tenor * Heinz Hopf (1894–1971), German mathematician * Heinz Hopf (actor) (1934–2001), Swedish actor * Ludwig Hopf (1884–1939), German physicist * Maria Hopf (1914-2008), German botanist and archaeologist {{surname, Hopf German-language surnames ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |