HOME





Parabolic Lie Algebra
In algebra, a parabolic Lie algebra \mathfrak p is a subalgebra of a semisimple Lie algebra \mathfrak g satisfying one of the following two conditions: * \mathfrak p contains a maximal solvable subalgebra (a Borel subalgebra) of \mathfrak g; * the orthogonal complement with respect to the Killing form of \mathfrak p in \mathfrak g is isomorphic to the nilradical of \mathfrak p. These conditions are equivalent over an algebraically closed field of characteristic zero, such as the complex numbers. If the field \mathbb F is not algebraically closed, then the first condition is replaced by the assumption that * \mathfrak p\otimes_\overline contains a Borel subalgebra of \mathfrak g\otimes_\overline where \overline is the algebraic closure of \mathbb F. Examples For the general linear Lie algebra \mathfrak=\mathfrak_n(\mathbb F), a parabolic subalgebra is the stabilizer of a partial flag of \mathbb F^n, i.e. a sequence of nested linear subspaces. For a complete flag, the stabilize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication. Elementary algebra is the main form of algebra taught in schools. It examines mathematical statements using variables for unspecified values and seeks to determine for which values the statements are true. To do so, it uses different methods of transforming equations to isolate variables. Linear algebra is a closely related field that investigates linear equations and combinations of them called '' systems of linear equations''. It provides methods to find the values that solve all equations in the system at the same time, and to study the set of these solutions. Abstract algebra studies algebraic structures, which consist of a set of mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Numbers
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficients has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Flag Variety
In mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite-dimensional vector space ''V'' over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth or complex manifold, called a real or complex flag manifold. Flag varieties are naturally projective varieties. Flag varieties can be defined in various degrees of generality. A prototype is the variety of complete flags in a vector space ''V'' over a field F, which is a flag variety for the special linear group over F. Other flag varieties arise by considering partial flags, or by restriction from the special linear group to subgroups such as the symplectic group. For partial flags, one needs to specify the sequence of dimensions of the flags under consideration. For subgroups of the linear group, additional conditions must be imposed on the flags. In the most general sense, a generalized flag variety is defined to mean a projective h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynkin Diagram
In the Mathematics, mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of Graph (discrete mathematics), graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra. The term "Dynkin diagram" can be ambiguous. In some cases, Dynkin diagrams are assumed to be directed graph, directed, in which case they correspond to root systems and semi-simple Lie algebras, while in other cases they are assumed to be undirected graph, undirected, in which case they correspond to Weyl groups. In this article, "Dynkin diagram" means ''directed'' Dynkin diagram, and ''undirected'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Root System
In mathematics, a root system is a configuration of vector space, vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory. Definitions and examples As a first example, consider the six vectors in 2-dimensional Euclidean space, R2, as shown in the image at the right; call them roots. These vectors Li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grassmannian
In mathematics, the Grassmannian \mathbf_k(V) (named in honour of Hermann Grassmann) is a differentiable manifold that parameterizes the set of all k-dimension (vector space), dimensional linear subspaces of an n-dimensional vector space V over a field (mathematics), field K that has a differentiable structure. For example, the Grassmannian \mathbf_1(V) is the space of lines through the origin in V, so it is the same as the projective space \mathbf(V) of one dimension lower than V. When V is a real number, real or complex number, complex vector space, Grassmannians are compact space, compact smooth manifolds, of dimension k(n-k). In general they have the structure of a nonsingular projective algebraic variety. The earliest work on a non-trivial Grassmannian is due to Julius Plücker, who studied the set of projective lines in real projective 3-space, which is equivalent to \mathbf_2(\mathbf^4), parameterizing them by what are now called Plücker coordinates. (See below.) Herma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flag (linear Algebra)
In mathematics, particularly in linear algebra, a flag is an increasing sequence of subspaces of a finite-dimensional vector space ''V''. Here "increasing" means each is a proper subspace of the next (see filtration): :\ = V_0 \sub V_1 \sub V_2 \sub \cdots \sub V_k = V. The term ''flag'' is motivated by a particular example resembling a flag: the zero point, a line, and a plane correspond to a nail, a staff, and a sheet of fabric. If we write that dim''V''''i'' = ''d''''i'' then we have :0 = d_0 < d_1 < d_2 < \cdots < d_k = n, where ''n'' is the of ''V'' (assumed to be finite). Hence, we must have ''k'' ≤ ''n''. A flag is called a complete flag if ''d''''i'' = ''i'' for all ''i'', otherwise it is called a partial flag. A partial flag can be obtained from a complete flag by deleting some of the subspace ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic Zero
In mathematics, the characteristic of a ring (mathematics), ring , often denoted , is defined to be the smallest positive number of copies of the ring's identity element, multiplicative identity () that will sum to the additive identity (). If no such number exists, the ring is said to have characteristic zero. That is, is the smallest positive number such that: : \underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent (group theory), exponent of the ring's additive group, that is, the smallest positive integer such that: : \underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). This definition applies in the more general class of Rng (algebra), rngs (see '); for (unital) ri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Lie Algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of modules, direct sum of Simple Lie algebra, simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper Lie algebra#Subalgebras.2C ideals and homomorphisms, ideals.) Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of Characteristic (algebra), characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form \kappa(x, y) = \operatorname(\operatorname(x)\operatorname(y)) is non-degenerate; *\mathfrak g has no non-zero abelian ideals; *\mathfrak g has no non-zero solvable Lie algebra, solvable ideals; * the Radical of a Lie algebra, radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraically Closed
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra holds for it. Every field K is contained in an algebraically closed field C, and the roots in C of the polynomials with coefficients in K form an algebraically closed field called an algebraic closure of K. Given two algebraic closures of K there are isomorphisms between them that fix the elements of K. Algebraically closed fields appear in the following chain of class inclusions: Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation x^2+1=0 has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically clos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]