PPARα
   HOME



picture info

PPARα
Peroxisome proliferator-activated receptor alpha (PPAR-α), also known as NR1C1 (nuclear receptor subfamily 1, group C, member 1), is a nuclear receptor protein functioning as a transcription factor that in humans is encoded by the ''PPARA'' gene. Together with peroxisome proliferator-activated receptor delta and peroxisome proliferator-activated receptor gamma, PPAR-alpha is part of the subfamily of peroxisome proliferator-activated receptors. It was the first member of the PPAR family to be cloned in 1990 by Stephen Green and has been identified as the nuclear receptor for a diverse class of rodent hepatocarcinogens that causes proliferation of peroxisomes. Expression PPAR-α is primarily activated through ligand binding. Endogenous ligands include fatty acids such as arachidonic acid as well as other polyunsaturated fatty acids and various fatty acid-derived compounds such as certain members of the 15-hydroxyeicosatetraenoic acid family of arachidonic acid metabolites, e.g. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peroxisome Proliferator-activated Receptor
In the field of molecular biology, the peroxisome proliferator–activated receptors (PPARs) are a group of nuclear receptor proteins that function as transcription factors regulating gene expression. PPARs play essential roles in regulating cell differentiation, cellular differentiation, developmental biology, development, and metabolism (carbohydrate metabolism, carbohydrate, lipid metabolism, lipid, protein metabolism, protein), and tumorigenesis Nomenclature and tissue distribution Three types of PPARs have been identified: alpha, PPARG, gamma, and delta (beta): * Peroxisome proliferator-activated receptor alpha, α (alpha) - expressed in liver, kidney, heart, muscle, adipose tissue, and others * Peroxisome proliferator-activated receptor delta, β/δ (beta/delta) - expressed in many tissues, especially in brain, adipose tissue, and skin * Peroxisome proliferator-activated receptor gamma, γ (gamma) - although transcribed by the same gene, this PPAR, by way of alternativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ketogenesis
Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids. The process supplies energy to certain organs, particularly the brain, heart and skeletal muscle, under specific scenarios including fasting, caloric restriction, sleep, or others. (In rare metabolic diseases, insufficient gluconeogenesis can cause excessive ketogenesis and hypoglycemia, which may lead to the life-threatening condition known as non-diabetic ketoacidosis.) Ketone bodies are not obligately produced from fatty acids; rather a meaningful amount of them is synthesized only in a situation of carbohydrate and protein insufficiency, where only fatty acids are readily available as fuel for their production. Recent evidence suggests that glial cells are ketogenic, supplying neurons with locally synthesized ketone bodies to sustain cognitive processes. Production Ketone bodies are produced mainly in the mitochondria of liver cell ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperlipidemia
Hyperlipidemia is abnormally high levels of any or all lipids (e.g. fats, triglycerides, cholesterol, phospholipids) or lipoproteins in the blood. citing: and The term ''hyperlipidemia'' refers to the laboratory finding itself and is also used as an umbrella term covering any of various acquired or genetic disorders that result in that finding. Hyperlipidemia represents a subset of dyslipidemia and a superset of hypercholesterolemia. Hyperlipidemia is usually chronic and requires ongoing medication to control blood lipid levels. Lipids (water-insoluble molecules) are transported in a Apolipoprotein, protein Lipoprotein, capsule. The size of that capsule, or lipoprotein, determines its density. The lipoprotein density and type of apolipoproteins it contains determines the fate of the particle and its influence on metabolism. Hyperlipidemias are divided into primary and secondary subtypes. Primary hyperlipidemia is usually due to genetic causes (such as a mutation in a recepto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fibrate
In pharmacology, the fibrates are a class of amphipathic carboxylic acids and esters. They are derivatives of fibric acid (phenoxyisobutyric acid). They are used for a range of metabolic disorders, mainly hypercholesterolemia (high cholesterol), and are therefore hypolipidemic agents. Medical uses Fibrates improve atherogenic dyslipidemia characterized by high triglyceride and/or low HDL-C levels and elevated concentrations of small dense LDL particles, with or without high LDL-C levels. Fibrates may be compared to statin drugs, which reduce LDL-cholesterol (LDL-C) and have only limited effects on other lipid parameters. Clinical trials have shown that the combination of statins and fibrates results in a significantly greater reduction in LDL-C and triglyceride levels and greater increases in high-density lipoprotein cholesterol (HDL-C) compared with monotherapy with either drug. Fibrates are used in accessory therapy in many forms of hypercholesterolemia, but the combin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


13-hydroxyoctadecadienoic Acid
13-Hydroxyoctadecadienoic acid (13-HODE) is the commonly used term for 13(''S'')-hydroxy-9''Z'',11''E''-octadecadienoic acid (13(''S'')-HODE). The production of 13(''S'')-HODE is often accompanied by the production of its stereoisomer, 13(''R'')-hydroxy-9''Z'',11''E''-octadecadienoic acid (13(''R'')-HODE). The adjacent figure gives the structure for the (''S'') stereoisomer of 13-HODE. Two other naturally occurring 13-HODEs that may accompany the production of 13(''S'')-HODE are its cis-trans (i.e., 9''E'',11''E'') isomers viz., 13(''S'')-hydroxy-9''E'',11''E''-octadecadienoic acid (13(''S'')-''EE''-HODE) and 13(''R'')-hydroxy-9''E'',11''E''-octadecadienoic acid (13(''R'')-''EE''-HODE). Studies credit 13(''S'')-HODE with a range of clinically relevant bioactivities; recent studies have assigned activities to 13(''R'')-HODE that differ from those of 13(''S'')-HODE; and other studies have proposed that one or more of these HODEs mediate physiological and pathological responses, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nuclear Receptor
In the field of molecular biology, nuclear receptors are a class of proteins responsible for sensing steroids, thyroid hormones, vitamins, and certain other molecules. These intracellular receptors work with other proteins to regulate the expression of specific genes, thereby controlling the development, homeostasis, and metabolism of the organism. Nuclear receptors bind directly to DNA regulating the expression of adjacent genes; hence these receptors are classified as transcription factors. The regulation of gene expression by nuclear receptors often occurs in the presence of a ligand—a molecule that affects the receptor's behavior. Ligand binding to a nuclear receptor results in a conformational change activating the receptor. The result is up- or down-regulation of gene expression. A unique property of nuclear receptors that differentiates them from other classes of receptors is their direct control of genomic DNA. Nuclear receptors play key roles in both embryonic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Glycolysis
Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and NADH, reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes. The wide occurrence of glycolysis in other species indicates that it is an ancient metabolic pathway. Indeed, the reactions that make up glycolysis and its parallel pathway, the pentose phosphate pathway, can occur in the Great Oxygenation Event, oxygen-free conditions of the Archean oceans, also in the absence of enzymes, catalyzed by metal ions, meaning this is a plausible prebiotic pathway for abiogenesis. The most common type of glycolysis is the ''Embden–Meyerhof–Parnas (EMP) pathway'', which was discovered by Gustav Embden, Otto Meyerhof, and Jakub Kar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Arteriosclerosis, Thrombosis, And Vascular Biology
''Arteriosclerosis, Thrombosis, and Vascular Biology'' (''ATVB'') is a peer-reviewed medical journal published on behalf of the American Heart Association by Lippincott Williams & Wilkins, an imprint of Wolters Kluwer. It covers basic and clinical research related to vascular biology, pathophysiology and complications of atherosclerosis, and thrombotic mechanisms in blood vessels. The journal was established in 1981 as ''Arteriosclerosis'' (), which was published bimonthly. From 1991 to 1994 it was published monthly under the title ''Arteriosclerosis and Thrombosis: A Journal of Vascular Biology'' (). According to the ''Journal Citation Reports'', the journal has a 2020 impact factor of 8.311, ranking it 8th in the category "Hematology" and 5th in the category "Peripheral Vascular Disease". Alan Daugherty has been the editor-in-chief since 2012. Open access option ''ATVB'' offers an open access option for full-length, original contributions. The corresponding author may sele ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Hindawi Academic Journals
This is a list of academic journal An academic journal (or scholarly journal or scientific journal) is a periodical publication in which Scholarly method, scholarship relating to a particular academic discipline is published. They serve as permanent and transparent forums for the ...s published by Hindawi. A B C D E G H I J L M N O P Q R S T U V W References {{Reflist External linksList of journals published by Hindawi * Hindawi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beta Oxidation
In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH2, which are electron carriers used in the electron transport chain. It is named as such because the beta carbon of the fatty acid chain undergoes oxidation and is converted to a carbonyl group to start the cycle all over again. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes. The overall reaction for one cycle of beta oxidation is: :C''n''-acyl-CoA + FAD + NAD''+'' + H''2''O + CoA → C''n''-2-acyl-CoA + FADH''2'' + NADH + H''+'' + acetyl-CoA Activation and membrane transport Free fatty acids cannot penetrate any bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mitochondria
A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. They were discovered by Albert von Kölliker in 1857 in the voluntary muscles of insects. The term ''mitochondrion'', meaning a thread-like granule, was coined by Carl Benda in 1898. The mitochondrion is popularly nicknamed the "powerhouse of the cell", a phrase popularized by Philip Siekevitz in a 1957 ''Scientific American'' article of the same name. Some cells in some multicellular organisms lack mitochondria (for example, mature mammalian red blood cells). The multicellular animal '' Henneguya salminicola'' is known to have retained mitochondrion-related organelles despite a complete loss of their mitochondrial genome. A large number of unicellular organisms, such as microspo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peroxisome
A peroxisome () is a membrane-bound organelle, a type of microbody, found in the cytoplasm of virtually all eukaryotic cells. Peroxisomes are oxidative organelles. Frequently, molecular oxygen serves as a co-substrate, from which hydrogen peroxide (H2O2) is then formed. Peroxisomes owe their name to hydrogen peroxide-generating and scavenging activities. They perform key roles in lipid metabolism and the redox, reduction of reactive oxygen species. Peroxisomes are involved in the catabolism of very long chain fatty acids, branched chain fatty acids, bile acid intermediates (in the liver), D-amino acids, and polyamines. Peroxisomes also play a role in the biosynthesis of plasmalogens: ether phospholipids critical for the normal function of mammalian brains and lungs. Peroxisomes contain approximately 10% of the total activity of two enzymes (Glucose-6-phosphate dehydrogenase and Phosphogluconate dehydrogenase, 6-Phosphogluconate dehydrogenase) in the pentose phosphate pathway, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]