HOME
*





PBLAS
Parallel Basic Linear Algebra Subprograms (PBLAS) is an implementation of Level 2 and 3 BLAS intended for distributed memory architectures. It provides a computational backbone for ScaLAPACK, a parallel implementation of LAPACK LAPACK ("Linear Algebra Package") is a standard software library for numerical linear algebra. It provides routines for solving systems of linear equations and linear least squares, eigenvalue problems, and singular value decomposition. It al .... It depends on Level 1 sequential BLAS operations for local computation and BLACS for communication between nodes. References {{Reflist Distributed computing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ScaLAPACK
The ScaLAPACK (or Scalable LAPACK) library includes a subset of LAPACK routines redesigned for distributed memory MIMD parallel computers. It is currently written in a Single-Program-Multiple-Data style using explicit message passing for interprocessor communication. It assumes matrices are laid out in a two-dimensional block cyclic decomposition. ScaLAPACK is designed for heterogeneous computing and is portable on any computer that supports MPI or PVM. ScaLAPACK depends on PBLAS operations in the same way LAPACK LAPACK ("Linear Algebra Package") is a standard software library for numerical linear algebra. It provides routines for solving systems of linear equations and linear least squares, eigenvalue problems, and singular value decomposition. It al ... depends on BLAS. As of version 2.0 the code base directly includes PBLAS and BLACS and has dropped support for PVM. Examples * Programming with Big Data in R fully utilizes ScaLAPACK and two-dimensional block cyclic de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LAPACK
LAPACK ("Linear Algebra Package") is a standard software library for numerical linear algebra. It provides routines for solving systems of linear equations and linear least squares, eigenvalue problems, and singular value decomposition. It also includes routines to implement the associated matrix factorizations such as LU, QR, Cholesky and Schur decomposition. LAPACK was originally written in FORTRAN 77, but moved to Fortran 90 in version 3.2 (2008). The routines handle both real and complex matrices in both single and double precision. LAPACK relies on an underlying BLAS implementation to provide efficient and portable computational building blocks for its routines. LAPACK was designed as the successor to the linear equations and linear least-squares routines of LINPACK and the eigenvalue routines of EISPACK. LINPACK, written in the 1970s and 1980s, was designed to run on the then-modern vector computers with shared memory. LAPACK, in contrast, was designed to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BLAS
Basic Linear Algebra Subprograms (BLAS) is a specification that prescribes a set of low-level routines for performing common linear algebra operations such as vector addition, scalar multiplication, dot products, linear combinations, and matrix multiplication. They are the ''de facto'' standard low-level routines for linear algebra libraries; the routines have bindings for both C ("CBLAS interface") and Fortran ("BLAS interface"). Although the BLAS specification is general, BLAS implementations are often optimized for speed on a particular machine, so using them can bring substantial performance benefits. BLAS implementations will take advantage of special floating point hardware such as vector registers or SIMD instructions. It originated as a Fortran library in 1979* and its interface was standardized by the BLAS Technical (BLAST) Forum, whose latest BLAS report can be found on the netlib website. This Fortran library is known as the ''reference implementation'' (sometimes co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]