Ornstein Theory
In mathematics, the Ornstein isomorphism theorem is a deep result in ergodic theory. It states that if two Bernoulli schemes have the same Kolmogorov entropy, then they are isomorphism , isomorphic. The result, given by Donald Ornstein in 1970, is important because it states that many systems previously believed to be unrelated are in fact isomorphic; these include all finite stationary stochastic processes, including Markov chains and subshifts of finite type, Anosov flows and Sinai's billiards, Solenoid (mathematics), ergodic automorphisms of the ''n''-torus, and the GKW operator, continued fraction transform. Discussion The theorem is actually a collection of related theorems. The first theorem states that if two different Bernoulli shifts have the same Kolmogorov entropy, then they are isomorphism of dynamical systems, isomorphic as dynamical systems. The third theorem extends this result to flow (mathematics), flows: namely, that there exists a flow T_t such that T_1 is a Ber ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
GKW Operator
GKW may refer to: * Gauss–Kuzmin–Wirsing operator In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. (This is not the same as the Gauss map in differential geometry.) It is named aft ... * Greenock West railway station, in Scotland * Guest Keen Williams, an Indian engineering firm {{disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Oxford University Press
Oxford University Press (OUP) is the publishing house of the University of Oxford. It is the largest university press in the world. Its first book was printed in Oxford in 1478, with the Press officially granted the legal right to print books by decree in 1586. It is the second-oldest university press after Cambridge University Press, which was founded in 1534. It is a department of the University of Oxford. It is governed by a group of 15 academics, the Delegates of the Press, appointed by the Vice Chancellor, vice-chancellor of the University of Oxford. The Delegates of the Press are led by the Secretary to the Delegates, who serves as OUP's chief executive and as its major representative on other university bodies. Oxford University Press has had a similar governance structure since the 17th century. The press is located on Walton Street, Oxford, Walton Street, Oxford, opposite Somerville College, Oxford, Somerville College, in the inner suburb of Jericho, Oxford, Jericho. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Daniel Rudolph
Daniel Jay Rudolph (1949–2010) was a mathematician who was considered a leader in ergodic theory and dynamical systems. He studied at Caltech and Stanford and taught postgraduate mathematics at Stanford University, the University of Maryland and Colorado State University, being appointed to the Albert C. Yates Endowed Chair in Mathematics at Colorado State in 2005. He jointly developed a theory of restricted orbit equivalence which unified several other theories. He founded and directed an intense preparation course for graduate math studies and began a Math circle for middle-school children. Early in life he was a modern dancer. He died in 2010 from amyotrophic lateral sclerosis, a degenerative motor neuron disease. Early life and education Rudolph was born to William Franklin Rudolph (1922–2000) and Betty Johnalou Waldner (1921–2004). He was the second of three sons, the others being Gregory and James. The family moved to Fort Collins when Daniel was very youn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Donald Samuel Ornstein
Donald Samuel Ornstein (born July 30, 1934, New York) is an American mathematician working in the area of ergodic theory. He received a Ph.D. from the University of Chicago in 1957 under the guidance of Irving Kaplansky. During his career at Stanford University he supervised the Ph. D. thesis of twenty three students, including David H. Bailey, Bob Burton, Doug Lind, Ami Radunskaya, Dan Rudolph, and Jeff Steif. He is most famous for his work on the isomorphism of Bernoulli shifts, for which he won the 1974 Bôcher Prize. He has been a member of the National Academy of Sciences since 1981. In 2012 he became a fellow of the American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, .... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bôcher Prize
Bocher is a surname. Notable people with the surname include: *Christiane Bøcher (1798–1874), Norwegian stage actress who was engaged at the Christiania Offentlige Theater * Édouard Bocher (1811–1900), French politician who was one of the founders of the Conférence Molé-Tocqueville * Herbert Böcher (1903–1983), German middle-distance runner who competed in the 1928 Summer Olympics * Joan Bocher (died 1550), English Anabaptist burned at the stake for heresy * Main Bocher (1890–1976), American fashion designer who founded the fashion label Mainbocher * Maxime Bôcher (1867–1918), American mathematician who published about 100 papers on differential equations, series, and algebra * Tyge W. Böcher (1909–1983), Danish botanist, evolutionary biologist, plant ecologist and phytogeographer See also *Bôcher Memorial Prize, founded by the American Mathematical Society in 1923 in memory of Maxime Bôcher *Bôcher's theorem In mathematics, Bôcher's theorem is either of two t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kolmogorov System
Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Soviet mathematician who played a central role in the creation of modern probability theory. He also contributed to the mathematics of topology, intuitionistic logic, turbulence, classical mechanics, algorithmic information theory and computational complexity. Biography Early life Andrey Kolmogorov was born in Tambov, about 500 kilometers southeast of Moscow, in 1903. His unmarried mother, Maria Yakovlevna Kolmogorova, died giving birth to him. Andrey was raised by two of his aunts in Tunoshna (near Yaroslavl) at the estate of his grandfather, a well-to-do nobleman. Little is known about Andrey's father. He was supposedly named Nikolai Matveyevich Katayev and had been an agronomist. Katayev had been exiled from Saint Petersburg to the Yarosla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Von Neumann
John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, integrating Basic research, pure and Applied science#Applied research, applied sciences and making major contributions to many fields, including mathematics, physics, economics, computing, and statistics. He was a pioneer in building the mathematical framework of quantum physics, in the development of functional analysis, and in game theory, introducing or codifying concepts including Cellular automaton, cellular automata, the Von Neumann universal constructor, universal constructor and the Computer, digital computer. His analysis of the structure of self-replication preceded the discovery of the structure of DNA. During World War II, von Neumann worked on the Manhattan Project. He developed the mathematical models behind the explosive lense ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flow (mathematics)
In mathematics, a flow formalizes the idea of the motion of particles in a fluid. Flows are ubiquitous in science, including engineering and physics. The notion of flow is basic to the study of ordinary differential equations. Informally, a flow may be viewed as a continuous motion of points over time. More formally, a flow is a group action of the real numbers on a set. The idea of a vector flow, that is, the flow determined by a vector field, occurs in the areas of differential topology, Riemannian geometry and Lie groups. Specific examples of vector flows include the geodesic flow, the Hamiltonian flow, the Ricci flow, the mean curvature flow, and Anosov flows. Flows may also be defined for systems of random variables and stochastic processes, and occur in the study of ergodic dynamical systems. The most celebrated of these is perhaps the Bernoulli flow. Formal definition A flow on a set is a group action of the additive group of real numbers on . More explicit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isomorphism Of Dynamical Systems
In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Measure-preserving systems obey the Poincaré recurrence theorem, and are a special case of conservative systems. They provide the formal, mathematical basis for a broad range of physical systems, and, in particular, many systems from classical mechanics (in particular, most non-dissipative systems) as well as systems in thermodynamic equilibrium. Definition A measure-preserving dynamical system is defined as a probability space and a measure-preserving transformation on it. In more detail, it is a system :(X, \mathcal, \mu, T) with the following structure: *X is a set, *\mathcal B is a σ-algebra over X, *\mu:\mathcal\rightarrow ,1/math> is a probability measure, so that \mu (X) = 1, and \mu(\varnothing) = 0, * T:X \rightarrow X is a measurable transformation which preserves the measure \mu, i.e., \forall A\in \m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bernoulli Shift
In mathematics, the Bernoulli scheme or Bernoulli shift is a generalization of the Bernoulli process to more than two possible outcomes. Bernoulli schemes appear naturally in symbolic dynamics, and are thus important in the study of dynamical systems. Many important dynamical systems (such as Axiom A systems) exhibit a repellor that is the product of the Cantor set and a smooth manifold, and the dynamics on the Cantor set are isomorphic to that of the Bernoulli shift. This is essentially the Markov partition. The term ''shift'' is in reference to the shift operator, which may be used to study Bernoulli schemes. The Ornstein isomorphism theorem shows that Bernoulli shifts are isomorphic when their Kolmogorov entropy, entropy is equal. Definition A Bernoulli scheme is a discrete-time stochastic process where each statistical independence, independent random variable may take on one of ''N'' distinct possible values, with the outcome ''i'' occurring with probability p_i, with ''i''&n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |