HOME





Orifice Plate
An orifice plate is a device used for measuring flow rate, reducing pressure or restricting flow (in the latter two cases it is often called a '). Description An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases. A little downstream of the orifice the flow reaches its point of maximum convergence, the ''vena contracta'' (see drawing to the right) where the velocity reaches its maximum and the pressure reaches its minimum. Beyond that, the flow expands, the velocity falls and the pressure increases. By measuring the difference in fluid pressure across tappings upstream and downstream of the plate, the flow rate can be obtained from Bernoulli's equation using coefficients established from extensive research. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orifice
An orifice is any opening, mouth, hole or vent, as in a pipe, a plate, or a body * Body orifice, any opening in the body of a human or animal *Orifice plate, a restriction used to measure flow or to control pressure or flow, sometimes given specialised names: ** Calibrated orifice, used to control pressure or flow ** Restrictive flow orifice, used to control flow ** Miss Shilling's orifice, used to control flow in the engines of early Spitfire and Hurricane fighter aeroplanes * Back Orifice, a tendentious computer program designed for remote system administration See also * Choked flow * Needle valve * Nozzle * Venturi effect * Flow measurement Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below: * Obstruction type (differential pr ...
{{Disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flow Coefficient
The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. A greater restriction in flow will create a larger pressure drop across a device and thus a smaller flow coefficient, conversely device with little restriction in flow will have a small pressure drop and a larger flow coefficient. For example, the flow coefficient of a 1" ball valve may be 80 while a similarly sized globe valve in the same application may be 10. Mathematically the flow coefficient (or flow-capacity rating of valve) can be expressed as C_\text = Q \sqrt, where, : is the rate of flow (expressed in US gallons per minute), : SG is the specific gravity of the fluid (for water = 1), : is the pressure drop across the valve (expressed in psi). In more practical terms, the ''flow coefficient'' is the volume (in US gallons) of water at that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flowmeter
Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below: * Obstruction type (differential pressure or variable area) * Inferential (turbine type) * Electromagnetic * Positive-displacement flowmeters, which accumulate a fixed volume of fluid and then count the number of times the volume is filled to measure flow. * Fluid dynamic (vortex shedding) * Anemometer * Ultrasonic flow meter * Mass flow meter ( Coriolis force). Flow measurement methods other than positive-displacement flowmeters rely on forces produced by the flowing stream as it overcomes a known constriction, to indirectly calculate flow. Flow may be measured by measuring the velocity of fluid over a known area. For very large flows, tracer methods may be used to deduce the flow rate from the change in concentration of a dye or radioisotope. Kinds and units of meas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


De Laval Nozzle
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy. De Laval nozzles are widely used in some types of steam turbines and rocket engine nozzles. It also sees use in supersonic jet engines. Similar flow properties have been applied to jet streams within astrophysics. History Giovanni Battista Venturi designed converging-diverging tubes known as Venturi tubes for experiments on fluid pressure reduction effects when fluid flows through chokes ( Venturi effect). German engineer and inventor Ernst Körting supposedly switched to a converging-diverging nozzle in his steam jet pumps by 1878 after using convergent nozzles but these nozzles remained a company secret. Later, Swedish engineer Gustaf de Lav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Choked Flow
Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity. Choked flow is a Fluid dynamics, fluid dynamic condition associated with the Venturi effect. When a flowing fluid at a given pressure and temperature passes through a constriction (such as the throat of a convergent-divergent nozzle or a valve in a pipe (material), pipe) into a lower pressure environment the fluid velocity increases. At initially subsonic upstream conditions, the conservation of energy principle requires the fluid velocity to increase as it flows through the smaller cross-sectional area of the constriction. At the same time, the Venturi effect causes the static pressure, and therefore the density, to decrease at the constriction. Choked flow is a limiting condition where the mass flow cannot increase with a further decrease in the downstream pressure environment for a fixed upstream pressure and temperature. For homogeneous fluids, the physical point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Accidental Release Source Terms
Accidental release source terms are the mathematical equations that quantify the flow rate at which accidental releases of liquid or gaseous pollutants into the ambient environment which can occur at industrial facilities such as petroleum refineries, petrochemical plants, natural gas processing plants, oil and gas transportation pipelines, chemical plants, and many other industrial activities. Governmental regulations in many countries require that the probability of such accidental releases be analyzed and their quantitative impact upon the environment and human health be determined so that mitigating steps can be planned and implemented. There are a number of mathematical calculation methods for determining the flow rate at which gaseous and liquid pollutants might be released from various types of accidents. Such calculational methods are referred to as ''source terms'', and this article on accidental release source terms explains some of the calculation methods used for deter ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

International System Of Units
The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI system is coordinated by the International Bureau of Weights and Measures, which is abbreviated BIPM from . The SI comprises a coherent system of units of measurement starting with seven base units, which are the second (symbol s, the unit of time), metre (m, length), kilogram (kg, mass), ampere (A, electric current), kelvin (K, thermodynamic temperature), mole (mol, amount of substance), and candela (cd, luminous intensity). The system can accommodate coherent units for an unlimited number of additional quantities. These are called coherent derived units, which can always be represented as products of powers of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heat Capacity Ratio
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure () to heat capacity at constant volume (). It is sometimes also known as the '' isentropic expansion factor'' and is denoted by (gamma) for an ideal gasγ first appeared in an article by the French mathematician, engineer, and physicist Siméon Denis Poisson: * On p. 332, Poisson defines γ merely as a small deviation from equilibrium which causes small variations of the equilibrium value of the density ρ. In Poisson's article of 1823 – * γ was expressed as a function of density D (p. 8) or of pressure P (p. 9). Meanwhile, in 1816 the French mathematician and physicist Pierre-Simon Laplace had found that the speed of sound depends on the ratio of the specific heats. * However, he didn't denote the ratio as γ. In 1825, Laplace stated that the speed of sound i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Choked Flow
Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity. Choked flow is a Fluid dynamics, fluid dynamic condition associated with the Venturi effect. When a flowing fluid at a given pressure and temperature passes through a constriction (such as the throat of a convergent-divergent nozzle or a valve in a pipe (material), pipe) into a lower pressure environment the fluid velocity increases. At initially subsonic upstream conditions, the conservation of energy principle requires the fluid velocity to increase as it flows through the smaller cross-sectional area of the constriction. At the same time, the Venturi effect causes the static pressure, and therefore the density, to decrease at the constriction. Choked flow is a limiting condition where the mass flow cannot increase with a further decrease in the downstream pressure environment for a fixed upstream pressure and temperature. For homogeneous fluids, the physical point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Venturi Effect
The Venturi effect is the reduction in fluid pressure that results when a moving fluid speeds up as it flows from one section of a pipe to a smaller section. The Venturi effect is named after its discoverer, the Italian physicist Giovanni Battista Venturi, and was first published in 1797. The effect has various engineering applications, as the reduction in pressure inside the constriction can be used both for measuring the fluid flow and for moving other fluids (e.g. in a vacuum ejector). Background In inviscid fluid dynamics, an incompressible fluid's velocity must ''increase'' as it passes through a constriction in accord with the principle of mass continuity, while its static pressure must ''decrease'' in accord with the principle of conservation of mechanical energy (Bernoulli's principle) or according to the Euler equations. Thus, any gain in kinetic energy a fluid may attain by its increased velocity through a constriction is balanced by a drop in pressure because ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reynolds Number
In fluid dynamics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between Inertia, inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar flow, laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulence, turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow (Eddy (fluid dynamics), eddy currents). These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation. The Reynolds number has wide applications, ranging from liquid flow in a pipe to the passage of air over an aircraft wing. It is used to predict the transition from laminar–turbulent transition, laminar to turbulent flow and is used in the scaling of similar but different-sized fl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vena Contracta
Vena may refer to: People * Cornel Vena (1932–2017), Romanian Olympic modern pentathlete * Gary Vena, American academic * Ryan Vena (born 1977), American arena football player *Vena, a diminutive of the Russian male first name Avenir *Vena, a diminutive of the Russian female first name Avenira *Vena, a diminutive of the Russian male first name Aventin *Vena, a diminutive of the Russian female first name Aventina *Vena, a variant of the female given name Slavena *Vena, a variant of the female given name Venus Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ... *Vena, a diminutive of the female given name Venetia Places * Vena, Sweden * Vena, Calabria, Italy Other uses * ''Vena'' (album), by Coldrain, 2015 * Vena (group), an American bachata music group * Vena (Hindu king), i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]