One-point Compactification
In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let ''X'' be a topological space. Then the Alexandroff extension of ''X'' is a certain compact space ''X''* together with an open embedding ''c'' : ''X'' → ''X''* such that the complement of ''X'' in ''X''* consists of a single point, typically denoted ∞. The map ''c'' is a Hausdorff compactification if and only if ''X'' is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvant ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Open Extension Topology
In topology, a branch of mathematics, an extension topology is a topology placed on the disjoint union of a topological space and another set. There are various types of extension topology, described in the sections below. Extension topology Let ''X'' be a topological space and ''P'' a set disjoint from ''X''. Consider in ''X'' ∪ ''P'' the topology whose open sets are of the form ''A'' ∪ ''Q'', where ''A'' is an open set of ''X'' and ''Q'' is a subset of ''P''. The closed sets of ''X'' ∪ ''P'' are of the form ''B'' ∪ ''Q'', where ''B'' is a closed set of ''X'' and ''Q'' is a subset of ''P''. For these reasons this topology is called the extension topology of ''X'' plus ''P'', with which one extends to ''X'' ∪ ''P'' the open and the closed sets of ''X''. As subsets of ''X'' ∪ ''P'' the subspace topology of ''X'' is the original topology of ''X'', while the subspace topology of ''P'' is the discrete topology. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Journal Of The London Mathematical Society
The London Mathematical Society (LMS) is one of the United Kingdom's learned societies for mathematics (the others being the Royal Statistical Society (RSS), the Institute of Mathematics and its Applications (IMA), the Edinburgh Mathematical Society and the Operational Research Society (ORS). History The Society was established on 16 January 1865, the first president being Augustus De Morgan. The earliest meetings were held in University College, but the Society soon moved into Burlington House, Piccadilly. The initial activities of the Society included talks and publication of a journal. The LMS was used as a model for the establishment of the American Mathematical Society in 1888. Mary Cartwright was the first woman to be President of the LMS (in 1961–62). The Society was granted a royal charter in 1965, a century after its foundation. In 1998 the Society moved from rooms in Burlington House into De Morgan House (named after the society's first president), at 57–5 ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Mathematische Annalen
''Mathematische Annalen'' (abbreviated as ''Math. Ann.'' or, formerly, ''Math. Annal.'') is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, Nigel Hitchin, and Thomas Schick. Currently, the managing editor of Mathematische Annalen is Yoshikazu Giga (University of Tokyo). Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947, the journal briefly ceased publication. References External links''Mathematische Annalen''homepage a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Category Of Topological Spaces
In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology. N.B. Some authors use the name Top for the categories with topological manifolds, with compactly generated spaces as objects and continuous maps as morphisms or with the category of compactly generated weak Hausdorff spaces. As a concrete category Like many categories, the category Top is a concrete category, meaning its objects are sets with additional structure (i.e. topologies) and its morphisms are functions preserving this structure. There is a natural forgetful functor to the category of sets which assigns to each topological space the underlyin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each Mathematical object, object X in ''C'' to ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Wedge Sum
In topology, the wedge sum is a "one-point union" of a family of topological spaces. Specifically, if ''X'' and ''Y'' are pointed spaces (i.e. topological spaces with distinguished basepoints x_0 and y_0) the wedge sum of ''X'' and ''Y'' is the quotient space of the disjoint union of ''X'' and ''Y'' by the identification x_0 \sim y_0: X \vee Y = (X \amalg Y)\;/, where \,\sim\, is the equivalence closure of the relation \left\. More generally, suppose \left(X_i\right)_ is an indexed family of pointed spaces with basepoints \left(p_i\right)_. The wedge sum of the family is given by: \bigvee_ X_i = \coprod_ X_i\;/, where \,\sim\, is the equivalence closure of the relation \left\. In other words, the wedge sum is the joining of several spaces at a single point. This definition is sensitive to the choice of the basepoints \left(p_i\right)_, unless the spaces \left(X_i\right)_ are homogeneous. The wedge sum is again a pointed space, and the binary operation is associative and co ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
![]() |
Smash Product
In topology, a branch of mathematics, the smash product of two pointed spaces (i.e. topological spaces with distinguished basepoints) and is the quotient of the product space under the identifications for all in and in . The smash product is itself a pointed space, with basepoint being the equivalence class of The smash product is usually denoted or . The smash product depends on the choice of basepoints (unless both ''X'' and ''Y'' are homogeneous). One can think of and as sitting inside as the subspaces and These subspaces intersect at a single point: the basepoint of So the union of these subspaces can be identified with the wedge sum X \vee Y = (X \amalg Y)\;/. In particular, in is identified with in X \vee Y, ditto for and . In X \vee Y, subspaces and intersect in the single point x_0 \sim y_0. The smash product is then the quotient :X \wedge Y = (X \times Y) / (X \vee Y). The smash product shows up in homotopy theory, a branch of algebraic topol ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Joseph J
Joseph is a common male name, derived from the Hebrew (). "Joseph" is used, along with " Josef", mostly in English, French and partially German languages. This spelling is also found as a variant in the languages of the modern-day Nordic countries. In Portuguese and Spanish, the name is "José". In Arabic, including in the Quran, the name is spelled , . In Kurdish (''Kurdî''), the name is , Persian, the name is , and in Turkish it is . In Pashto the name is spelled ''Esaf'' (ايسپ) and in Malayalam it is spelled ''Ousep'' (ഔസേപ്പ്). In Tamil, it is spelled as ''Yosepu'' (யோசேப்பு). The name has enjoyed significant popularity in its many forms in numerous countries, and ''Joseph'' was one of the two names, along with ''Robert'', to have remained in the top 10 boys' names list in the US from 1925 to 1972. It is especially common in contemporary Israel, as either "Yossi" or "Yossef", and in Italy, where the name "Giuseppe" was the most com ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Quotient Space (topology)
In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space. Intuitively speaking, the points of each equivalence class are or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space. Definition Let X be a topological space, and let \sim be an equivalence relation on X. The quotient set Y = X/ is the set of equivalence classes of elements of X. The e ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Hawaiian Earring
In mathematics, the Hawaiian earring \mathbb is the topological space defined by the union of circles in the Euclidean plane \R^2 with center \left(\tfrac,0\right) and radius \tfrac for n = 1, 2, 3, \ldots endowed with the subspace topology: \mathbb=\bigcup_^\left\. The space \mathbb is homeomorphic to the one-point compactification of the union of a countable family of disjoint open intervals. The Hawaiian earring is a one-dimensional, compact, locally path-connected metrizable space. Although \mathbb is locally homeomorphic to \R at all non-origin points, \mathbb is not semi-locally simply connected at (0,0). Therefore, \mathbb does not have a simply connected covering space and is usually given as the simplest example of a space with this complication. The Hawaiian earring looks very similar to the wedge sum of countably infinitely many circles; that is, the rose with infinitely many petals, but these two spaces are not homeomorphic. The difference between their topolo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Bouquet Of Circles
In mathematics, a rose (also known as a bouquet of ''n'' circles) is a topological space obtained by gluing together a collection of circles along a single point. The circles of the rose are called petals. Roses are important in algebraic topology, where they are closely related to free groups. Definition A rose is a wedge sum of circles. That is, the rose is the quotient space ''C''/''S'', where ''C'' is a disjoint union of circles and ''S'' a set consisting of one point from each circle. As a cell complex, a rose has a single vertex, and one edge for each circle. This makes it a simple example of a topological graph. A rose with ''n'' petals can also be obtained by identifying ''n'' points on a single circle. The rose with two petals is known as the figure eight. Relation to free groups The fundamental group of a rose is free, with one generator for each petal. The universal cover is an infinite tree, which can be identified with the Cayley graph of the free ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |