HOME





ORF3b
ORF3b is a gene found in coronaviruses of the subgenus ''Sarbecovirus'', encoding a short non-structural protein. It is present in both SARS-CoV (which causes the disease SARS) and SARS-CoV-2 (which causes COVID-19), though the protein product has very different lengths in the two viruses. The encoded protein is significantly shorter in SARS-CoV-2, at only 22 amino acid residues compared to 153–155 in SARS-CoV. Both the longer SARS-CoV and shorter SARS-CoV-2 proteins have been reported as interferon antagonists. It is unclear whether the SARS-CoV-2 gene expresses a functional protein. Nomenclature There has been significant confusion in the scientific literature around the nomenclature used for the accessory proteins of SARS-CoV-2, especially several overlapping genes with ORF3a. Due to differences in the genomes of SARS-CoV and SARS-CoV-2, two distinct open reading frames (ORFs) in the SARS-CoV-2 genome have been referred to as "ORF3b". In SARS-CoV, ORF3b is a gene of 155 codo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ORF3d
ORF3d is a gene found in SARS-CoV-2 (the virus that causes COVID-19) and at least one closely related coronavirus found in pangolins, though it is not found in other closely related viruses within the '' Sarbecovirus'' subgenus. It is 57 codons long and encodes a novel 57 amino acid residue protein of unknown function. At least two isoforms have been described, of which the shorter 33-residue form, ORF3d-2, may be more highly expressed, or even the only form expressed. It is reported to be antigenic and antibodies to the ORF3d protein occur in patients recovered from COVID-19. There is no homolog in the genome of the otherwise closely related SARS-CoV (which causes the disease SARS). Nomenclature There has been significant confusion in the scientific literature around the nomenclature used for the accessory proteins of SARS-CoV-2, especially several overlapping genes with ORF3a. Many scientific papers have referred to ORF3d and its protein product as ORF3b, due to confusion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ORF3a
ORF3a (previously known as X1 or U274) is a gene found in coronaviruses of the subgenus ''Sarbecovirus'', including SARS-CoV and SARS-CoV-2. It encodes an accessory protein about 275 amino acid residues long, which is thought to function as a viroporin. It is the largest accessory protein and was the first of the SARS-CoV accessory proteins to be described. Comparative genomics ORF3a is well conserved within the subgenus ''Sarbecovirus''. The protein has 73% sequence identity between SARS-CoV (274 residues) and SARS-CoV-2 (275 residues). Within the ORF3a open reading frame there are several overlapping genes in the genome: ORF3a, ORF3b, and (in SARS-CoV-2 only) ORF3c. In SARS-CoV-2, the overlap between ORF3a, ORF3c, and ORF3d potentially represents a rare example of all three possible reading frames of the same sequence region encoding functional proteins. Although ORF3a is present in ''Sarbecovirus'', it is absent in another ''Betacoronavirus'' subgenus, ''Embecovirus'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SARSr-CoV
Severe acute respiratory syndrome–related coronavirus (SARSr-CoV or SARS-CoV'', Betacoronavirus pandemicum'')The terms ''SARSr-CoV'' and ''SARS-CoV'' are sometimes used interchangeably, especially prior to the discovery of SARS-CoV-2. This may cause confusion when some publications refer to SARS-CoV-1 as ''SARS-CoV''. is a species of virus consisting of many known strains. Two strains of the virus have caused outbreaks of severe respiratory diseases in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV or SARS-CoV-1), the cause of the 2002–2004 outbreak of severe acute respiratory syndrome (SARS), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the pandemic of COVID-19. There are hundreds of other strains of SARSr-CoV, which are only known to infect non-human mammal species: bats are a major reservoir of many strains of SARSr-CoV; several strains have been identified in Himalayan palm civets, which were likely ancestors of SA ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ORF3c
ORF3c is a gene found in coronaviruses of the subgenus ''Sarbecovirus'', including SARS-CoV and SARS-CoV-2. It was first identified in the SARS-CoV-2 genome and encodes a 41 amino acid non-structural protein of unknown function. It is also present in the SARS-CoV genome, but was not recognized until the identification of the SARS-CoV-2 homolog. Nomenclature There has been significant confusion in the scientific literature around the nomenclature used for the accessory proteins of SARS-CoV-2, especially several overlapping genes with ORF3a. The predicted protein product of the ''ORF3c'' gene has at least once been referred to as "3b protein", but it is not to be confused with the non-homologous gene ''ORF3b''. It has also been described under the names ''ORF3h'' and ''ORF3a.iORF1''. The recommended nomenclature for SARS-CoV-2 uses the term ''ORF3c'' for this gene. Comparative genomics ORF3c is an overlapping gene whose open reading frame overlaps both ORF3a and ORF3d in the SARS- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sarbecovirus
Severe acute respiratory syndrome–related coronavirus (SARSr-CoV or SARS-CoV'', Betacoronavirus pandemicum'')The terms ''SARSr-CoV'' and ''SARS-CoV'' are sometimes used interchangeably, especially prior to the discovery of SARS-CoV-2. This may cause confusion when some publications refer to SARS-CoV-1 as ''SARS-CoV''. is a species of virus consisting of many known strains. Two strains of the virus have caused outbreaks of severe respiratory diseases in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV or SARS-CoV-1), the cause of the 2002–2004 outbreak of severe acute respiratory syndrome (SARS), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the pandemic of COVID-19. There are hundreds of other strains of SARSr-CoV, which are only known to infect non-human mammal species: bats are a major reservoir of many strains of SARSr-CoV; several strains have been identified in Himalayan palm civets, which were likely ancestors of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coronavirus Envelope Protein
The envelope (E) protein is the smallest and least well-characterized of the four major structural proteins found in coronavirus virions. It is an integral membrane protein less than 110 amino acid residues long; in SARS-CoV-2, the causative agent of Covid-19, the E protein is 75 residues long. Although it is not necessarily essential gene, essential for viral replication, absence of the E protein may produce abnormally assembled viral capsids or reduced replication. E is a multifunctional protein and, in addition to its role as a structural protein in the viral capsid, it is thought to be involved in viral assembly, likely functions as a viroporin, and is involved in viral pathogenesis. Structure The E protein consists of a short hydrophilic N-terminal region, a hydrophobic transmembrane helix, helical transmembrane domain, and a somewhat hydrophilic C-terminal region. In SARS-CoV and SARS-CoV-2, the C-terminal region contains a PDZ-binding motif (PBM). This feature appears to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genome
A genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding genes, other functional regions of the genome such as regulatory sequences (see non-coding DNA), and often a substantial fraction of junk DNA with no evident function. Almost all eukaryotes have mitochondrial DNA, mitochondria and a small mitochondrial genome. Algae and plants also contain chloroplast DNA, chloroplasts with a chloroplast genome. The study of the genome is called genomics. The genomes of many organisms have been Whole-genome sequencing, sequenced and various regions have been annotated. The first genome to be sequenced was that of the virus φX174 in 1977; the first genome sequence of a prokaryote (''Haemophilus influenzae'') was published in 1995; the yeast (''Saccharomyces cerevisiae'') genome was the first eukaryotic genome to be sequenced in 1996. The Human Genome Project ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Viral Structural Protein
A viral structural protein is a viral protein that is a structural component of the mature virus. Examples include the SARS coronavirus 3a and 7a accessory proteins. Bacteriophage T4 structural proteins During assembly of the bacteriophage (phage) T4 virion, the structural proteins encoded by the phage genes interact with each other in a characteristic sequence. Maintaining an appropriate balance in the amounts of each of these structural proteins produced during viral infection appears to be critical for normal phage T4 morphogenesis. Phage T4 encoded proteins that determine virion structure include major structural components, minor structural components and non-structural proteins that catalyze specific steps in the morphogenesis sequence. Phage T4 morphogenesis is divided into three independent pathways: the head, the tail and the long tail fibres as detailed by Yap and Rossman.Yap ML, Rossmann MG. Structure and function of bacteriophage T4. Future Microbiol. 2014;9(12):131 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and non-coding genes. During gene expression (the synthesis of Gene product, RNA or protein from a gene), DNA is first transcription (biology), copied into RNA. RNA can be non-coding RNA, directly functional or be the intermediate protein biosynthesis, template for the synthesis of a protein. The transmission of genes to an organism's offspring, is the basis of the inheritance of phenotypic traits from one generation to the next. These genes make up different DNA sequences, together called a genotype, that is specific to every given individual, within the gene pool of the population (biology), population of a given species. The genotype, along with environmental and developmental factors, ultimately determines the phenotype ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence Conservation
In evolutionary biology, conserved sequences are identical or similar sequences in nucleic acids (DNA and RNA) or proteins across species ( orthologous sequences), or within a genome ( paralogous sequences), or between donor and receptor taxa ( xenologous sequences). Conservation indicates that a sequence has been maintained by natural selection. A highly conserved sequence is one that has remained relatively unchanged far back up the phylogenetic tree, and hence far back in geological time. Examples of highly conserved sequences include the RNA components of ribosomes present in all domains of life, the homeobox sequences widespread amongst eukaryotes, and the tmRNA in bacteria. The study of sequence conservation overlaps with the fields of genomics, proteomics, evolutionary biology, phylogenetics, bioinformatics and mathematics. History The discovery of the role of DNA in heredity, and observations by Frederick Sanger of variation between animal insulins in 1949, promp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stop Codon
In molecular biology, a stop codon (or termination codon) is a codon (nucleotide triplet within messenger RNA) that signals the termination of the translation process of the current protein. Most codons in messenger RNA correspond to the addition of an amino acid to a growing polypeptide chain, which may ultimately become a protein; stop codons signal the termination of this process by binding release factors, which cause the ribosomal subunits to disassociate, releasing the amino acid chain. While start codons need nearby sequences or initiation factors to start translation, a stop codon alone is sufficient to initiate termination. Properties Standard codons In the standard genetic code, there are three different termination codons: Alternative stop codons There are variations on the standard genetic code, and alternative stop codons have been found in the mitochondrial genomes of vertebrates, '' Scenedesmus obliquus'', and '' Thraustochytrium''. Reassigned ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]