O-minimal Theory
In mathematical logic, and more specifically in model theory, an infinite structure (''M'',<,...) that is totally ordered by < is called an o-minimal structure if and only if every definable subset ''X'' ⊆ ''M'' (with parameters taken from ''M'') is a finite union of intervals and points. O-minimality can be regarded as a weak form of . A structure ''M'' is o-minimal if and only if every form ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Strongly Minimal Theory
In model theory—a branch of mathematical logic—a minimal structure is an infinite one-sorted structure such that every subset of its domain that is definable with parameters is either finite or cofinite. A strongly minimal theory is a complete theory all models of which are minimal. A strongly minimal structure is a structure whose theory is strongly minimal. Thus a structure is minimal only if the parametrically definable subsets of its domain cannot be avoided, because they are already parametrically definable in the pure language of equality. Strong minimality was one of the early notions in the new field of classification theory and stability theory that was opened up by Morley's theorem on totally categorical structures. The nontrivial standard examples of strongly minimal theories are the one-sorted theories of infinite-dimensional vector spaces, and the theories ACF''p'' of algebraically closed fields of characteristic ''p''. As the example ACF''p'' shows, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Algebraic Geometry
In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomial mappings). Semialgebraic geometry is the study of semialgebraic sets, i.e. real-number solutions to algebraic inequalities with-real number coefficients, and mappings between them. The most natural mappings between semialgebraic sets are semialgebraic mappings, i.e., mappings whose graphs are semialgebraic sets. Terminology Nowadays the words 'semialgebraic geometry' and 'real algebraic geometry' are used as synonyms, because real algebraic sets cannot be studied seriously without the use of semialgebraic sets. For example, a projection of a real algebraic set along a coordinate axis need not be a real algebraic set, but it is always a semialgebraic set: this is the Tarski–Seidenberg theorem. Related fields are o-minimal theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semialgebraic Set
In mathematics, a basic semialgebraic set is a set defined by polynomial equalities and polynomial inequalities, and a semialgebraic set is a finite union of basic semialgebraic sets. A semialgebraic function is a function with a semialgebraic graph. Such sets and functions are mainly studied in real algebraic geometry which is the appropriate framework for algebraic geometry over the real numbers. Definition Let \mathbb be a real closed field (For example \mathbb could be the field of real numbers \mathbb). A subset S of \mathbb^n is a ''semialgebraic set'' if it is a finite union of sets defined by polynomial equalities of the form \ and of sets defined by polynomial inequalities of the form \. Properties Similarly to algebraic subvarieties, finite unions and intersections of semialgebraic sets are still semialgebraic sets. Furthermore, unlike subvarieties, the complement of a semialgebraic set is again semialgebraic. Finally, and most importantly, the Tarski–Seide ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Łojasiewicz Inequality
In real algebraic geometry, the Łojasiewicz inequality, named after Stanisław Łojasiewicz, gives an upper bound for the distance of a point to the nearest zero of a given real analytic function. Specifically, let ƒ : ''U'' → R be a real analytic function on an open set ''U'' in R''n'', and let ''Z'' be the zero locus of ƒ. Assume that ''Z'' is not empty. Then for any compact set ''K'' in ''U'', there exist positive constants α and ''C'' such that, for all ''x'' in ''K'' :\operatorname(x,Z)^\alpha \le C, f(x), . Here, \alpha can be small. The following form of this inequality is often seen in more analytic contexts: with the same assumptions on ''f'', for every ''p'' ∈ ''U'' there is a possibly smaller open neighborhood ''W'' of ''p'' and constants θ ∈ (0,1) and ''c'' > 0 such that :, f(x)-f(p), ^\theta\le c, \nabla f(x), . Polyak inequality A special case of the Łojasiewicz inequality, due to , is comm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stratification (mathematics)
Stratification has several usages in mathematics. In mathematical logic In mathematical logic, stratification is any consistent assignment of numbers to predicate symbols guaranteeing that a unique formal interpretation of a logical theory exists. Specifically, we say that a set of clauses of the form Q_1 \wedge \dots \wedge Q_n \wedge \neg Q_ \wedge \dots \wedge \neg Q_ \rightarrow P is stratified if and only if there is a stratification assignment S that fulfills the following conditions: # If a predicate P is positively derived from a predicate Q (i.e., P is the head of a rule, and Q occurs positively in the body of the same rule), then the stratification number of P must be greater than or equal to the stratification number of Q, in short S(P) \geq S(Q). # If a predicate P is derived from a negated predicate Q (i.e., P is the head of a rule, and Q occurs negatively in the body of the same rule), then the stratification number of P must be greater than the stratification numb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jean-Louis Verdier
Jean-Louis Verdier (; 2 February 1935 – 25 August 1989) was a French mathematician who worked, under the guidance of his doctoral advisor Alexander Grothendieck, on derived categories and Verdier duality. He was a close collaborator of Grothendieck, notably contributing to SGA 4 his theory of hypercovers and anticipating the later development of étale homotopy by Michael Artin and Barry Mazur, following a suggestion he attributed to Pierre Cartier. Saul Lubkin's related theory of rigid hypercovers was later taken up by Eric Friedlander in his definition of the étale topological type. Verdier was a student at the elite École Normale Supérieure in Paris, and later became director of studies there, as well as a Professor at the University of Paris VII. For many years he directed a joint seminar at the École Normale Supérieure with Adrien Douady. Verdier was a member of Bourbaki. In 1984 he was the president of the Société Mathématique de France. In 1976 Ver ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hassler Whitney
Hassler Whitney (March 23, 1907 – May 10, 1989) was an American mathematician. He was one of the founders of singularity theory, and did foundational work in manifolds, embeddings, immersion (mathematics), immersions, characteristic classes and, geometric integration theory. Biography Life Hassler Whitney was born on March 23, 1907, in New York City, where his father, Edward Baldwin Whitney, was the First District New York Supreme Court judge. His mother, A. Josepha Newcomb Whitney, was an artist and political activist. He was the paternal nephew of Connecticut Governor and Chief Justice Simeon E. Baldwin, his paternal grandfather was William Dwight Whitney, professor of Ancient Languages at Yale University, linguist and Sanskrit scholar. Whitney was the great-grandson of Connecticut Governor and US Senator Roger Sherman Baldwin, and the great-great-grandson of American founding father Roger Sherman. His maternal grandparents were astronomer and mathematician Simon Newcomb (183 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Algebraic Geometry
In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomial mappings). Semialgebraic geometry is the study of semialgebraic sets, i.e. real-number solutions to algebraic inequalities with-real number coefficients, and mappings between them. The most natural mappings between semialgebraic sets are semialgebraic mappings, i.e., mappings whose graphs are semialgebraic sets. Terminology Nowadays the words 'semialgebraic geometry' and 'real algebraic geometry' are used as synonyms, because real algebraic sets cannot be studied seriously without the use of semialgebraic sets. For example, a projection of a real algebraic set along a coordinate axis need not be a real algebraic set, but it is always a semialgebraic set: this is the Tarski–Seidenberg theorem. Related fields are o-minimal theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semialgebraic Set
In mathematics, a basic semialgebraic set is a set defined by polynomial equalities and polynomial inequalities, and a semialgebraic set is a finite union of basic semialgebraic sets. A semialgebraic function is a function with a semialgebraic graph. Such sets and functions are mainly studied in real algebraic geometry which is the appropriate framework for algebraic geometry over the real numbers. Definition Let \mathbb be a real closed field (For example \mathbb could be the field of real numbers \mathbb). A subset S of \mathbb^n is a ''semialgebraic set'' if it is a finite union of sets defined by polynomial equalities of the form \ and of sets defined by polynomial inequalities of the form \. Properties Similarly to algebraic subvarieties, finite unions and intersections of semialgebraic sets are still semialgebraic sets. Furthermore, unlike subvarieties, the complement of a semialgebraic set is again semialgebraic. Finally, and most importantly, the Tarski–Seide ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pfaffian Function
In mathematics, Pfaffian functions are a certain class of functions whose derivative can be written in terms of the original function. They were originally introduced by Askold Khovanskii in the 1970s, but are named after German mathematician Johann Pfaff. Basic definition Some functions, when differentiated, give a result which can be written in terms of the original function. Perhaps the simplest example is the exponential function, ''f''(''x'') = ''e''''x''. If we differentiate this function we get ''ex'' again, that is :f^\prime(x) = f(x). Another example of a function like this is the reciprocal function, ''g''(''x'') = 1/''x''. If we differentiate this function we will see that :g^\prime(x) = -g(x)^2. Other functions may not have the above property, but their derivative may be written in terms of functions like those above. For example, if we take the function ''h''(''x'') = ''e''''x'' log ''x'' then we see :h^\prime(x) = e^ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |