Nucleolus (game Theory)
   HOME





Nucleolus (game Theory)
In cooperative game theory, the nucleolus of a cooperative game is the solution (i.e., allocation of payments to players) that maximizes the smallest excess of a coalition (where the excess is the difference between the payment given to the coalition and the value the coalition could get by deviating). Subject to that, the nucleolus satisfies the second-smallest excess; and so on, in the leximin order. The nucleolus was introduced by David Schmeidler in 1969. Background In a cooperative game, there is a set ''N'' of ''players'', who can cooperate and form ''coalitions''. Each coalition ''S'' (subset of players) has a ''value'', which is the profit that ''S'' can make if they coopereate on their own, ignoring the other players in ''N''. The players opt to form the ''grand coalition'' - a coalition containing all players in ''N''. The question then arises, how should the value of the grand coalition be allocated among the players? Each such allocation of value is called a ''soluti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cooperative Game Theory
In game theory, a cooperative game (or coalitional game) is a game with groups of players who form binding “coalitions” with external enforcement of cooperative behavior (e.g. through contract law). This is different from non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing (e.g. through credible threats). Cooperative games are analysed by focusing on coalitions that can be formed, and the joint actions that groups can take and the resulting collective payoffs. Mathematical definition A cooperative game is given by specifying a value for every coalition. Formally, the coalitional game consists of a finite set of players N , called the ''grand coalition'', and a ''characteristic function'' v : 2^N \to \mathbb from the set of all possible coalitions of players to a set of payments that satisfies v( \emptyset ) = 0 . The function describes how much collective payoff a set of players can gain by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE