HOME





Norm (group)
In mathematics, in the field of group theory, the norm of a group is the intersection of the normalizers of all its subgroups. This is also termed the Baer norm, after Reinhold Baer. The following facts are true for the Baer norm: * It is a characteristic subgroup. * It contains the center of the group. * It is contained inside the second term of the upper central series. * It is a Dedekind group, so is either abelian or has a direct factor isomorphic to the quaternion group In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a nonabelian group, non-abelian group (mathematics), group of Group order, order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. .... * If it contains an element of infinite order, then it is equal to the center of the group. References * * Group theory Functional subgroups {{Abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a set and an operation that combines any two elements of the set to produce a third element of the set, in such a way that the operation is associative, an identity element exists and every element has an inverse. These three axioms hold for number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the ob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normalizer
In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', or equivalently, such that conjugation by g leaves each element of ''S'' fixed. The normalizer of ''S'' in ''G'' is the set of elements \mathrm_G(S) of ''G'' that satisfy the weaker condition of leaving the set S \subseteq G fixed under conjugation. The centralizer and normalizer of ''S'' are subgroups of ''G''. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets ''S''. Suitably formulated, the definitions also apply to semigroups. In ring theory, the centralizer of a subset of a ring is defined with respect to the semigroup (multiplication) operation of the ring. The centralizer of a subset of a ring ''R'' is a subring of ''R''. This article also deals with centralizers and no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reinhold Baer
Reinhold Baer (22 July 1902 – 22 October 1979) was a German mathematician, known for his work in algebra. He introduced injective modules in 1940. He is the eponym of Baer rings and Baer groups. Biography Baer studied mechanical engineering for a year at Leibniz University Hannover. He then went to study philosophy at Freiburg in 1921. While he was at Göttingen in 1922 he was influenced by Emmy Noether and Hellmuth Kneser. In 1924 he won a scholarship for specially gifted students. Baer wrote up his doctoral dissertation and it was published in Crelle's Journal in 1927. Baer accepted a post at Halle in 1928. There, he published Ernst Steinitz's "Algebraische Theorie der Körper" with Helmut Hasse, first published in Crelle's Journal in 1910. While Baer was with his wife in Austria, Adolf Hitler and the Nazis came into power. Both of Baer's parents were Jewish, and he was for this reason informed that his services at Halle were no longer required. Louis Mordell invited him ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic Subgroup
In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism, every characteristic subgroup is normal; though the converse is not guaranteed. Examples of characteristic subgroups include the commutator subgroup and the center of a group. Definition A subgroup of a group is called a characteristic subgroup if for every automorphism of , one has ; then write . It would be equivalent to require the stronger condition = for every automorphism of , because implies the reverse inclusion . Basic properties Given , every automorphism of induces an automorphism of the quotient group , which yields a homomorphism . If has a unique subgroup of a given index, then is characteristic in . Related concepts Normal subgroup A subgroup of that is invariant under all inner automorphism ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Center (group Theory)
In abstract algebra, the center of a group, , is the set of elements that commute with every element of . It is denoted , from German ''Zentrum,'' meaning ''center''. In set-builder notation, :. The center is a normal subgroup, . As a subgroup, it is always characteristic, but is not necessarily fully characteristic. The quotient group, , is isomorphic to the inner automorphism group, . A group is abelian if and only if . At the other extreme, a group is said to be centerless if is trivial; i.e., consists only of the identity element. The elements of the center are sometimes called central. As a subgroup The center of ''G'' is always a subgroup of . In particular: # contains the identity element of , because it commutes with every element of , by definition: , where is the identity; # If and are in , then so is , by associativity: for each ; i.e., is closed; # If is in , then so is as, for all in , commutes with : . Furthermore, the center of is alwa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Central Series
In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings (considered as Lie algrebras), it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal. This article uses the language of group theory; analogous terms are used for Lie algebras. A general group possesses a lower central series and upper central series (also called the descending central series and ascending central series, respectively), but these are central series in the strict sense (terminating in the trivial subgroup) if and only if the group is nilpotent. A related but distinct construction is the derived series, which terminates in the trivial subgroup whenever the group is solvable. Definition A central series is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dedekind Group
In group theory, a Dedekind group is a group ''G'' such that every subgroup of ''G'' is normal. All abelian groups are Dedekind groups. A non-abelian Dedekind group is called a Hamiltonian group. The most familiar (and smallest) example of a Hamiltonian group is the quaternion group of order 8, denoted by Q8. Dedekind and Baer have shown (in the finite and respectively infinite order case) that every Hamiltonian group is a direct product of the form , where ''B'' is an elementary abelian 2-group, and ''D'' is a torsion abelian group with all elements of odd order. Dedekind groups are named after Richard Dedekind, who investigated them in , proving a form of the above structure theorem (for finite groups). He named the non-abelian ones after William Rowan Hamilton, the discoverer of quaternions. In 1898 George Miller delineated the structure of a Hamiltonian group in terms of its order and that of its subgroups. For instance, he shows "a Hamilton group of order 2''a'' has quatern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quaternion Group
In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a nonabelian group, non-abelian group (mathematics), group of Group order, order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. It is given by the presentation of a group, group presentation :\mathrm_8 = \langle \bar,i,j,k \mid \bar^2 = e, \;i^2 = j^2 = k^2 = ijk = \bar \rangle , where ''e'' is the identity element and commutativity, commutes with the other elements of the group. Another Presentation of a group#Examples, presentation of Q8 is :\mathrm_8 = \langle a,b \mid a^4 = e, a^2 = b^2, ba = a^b\rangle. Compared to dihedral group The quaternion group Q8 has the same order as the dihedral group Examples of groups#The symmetry group of a square: dihedral group of order 8, D4, but a different structure, as shown by their Cayley and cycle graphs: In the diagrams for D4, the group elements are marked with their action on a letter F in the defining represe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]