HOME





Nonlinear Dirac Equation
:''See Ricci calculus and Van der Waerden notation for the notation.'' In quantum field theory, the nonlinear Dirac equation is a model of self-interacting Dirac fermions. This model is widely considered in quantum physics as a toy model of self-interacting electrons. The nonlinear Dirac equation appears in the Einstein–Cartan–Sciama–Kibble theory of gravity, which extends general relativity to matter with intrinsic angular momentum (spin). This theory removes a constraint of the symmetry of the affine connection and treats its antisymmetric part, the torsion tensor, as a variable in varying the action. In the resulting field equations, the torsion tensor is a homogeneous, linear function of the spin tensor. The minimal coupling between torsion and Dirac spinors thus generates an axial-axial, spin–spin interaction in fermionic matter, which becomes significant only at extremely high densities. Consequently, the Dirac equation becomes nonlinear (cubic) in the spinor fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ricci Calculus
Ricci () is an Italian surname. Notable Riccis Arts and entertainment * Antonio Ricci (painter) (c.1565–c.1635), Spanish Baroque painter of Italian origin * Christina Ricci (born 1980), American actress * Clara Ross Ricci (1858-1954), British composer * Federico Ricci (1809–77), Italian composer * Franco Maria Ricci (1937–2020), Italian art publisher * Italia Ricci (born 1986), Canadian actress * Jason Ricci (born 1974), American blues harmonica player * Lella Ricci (1850–71), Italian singer * Luigi Ricci (1805–59), Italian composer * Luigi Ricci (1893–1981), Italian vocal coach * Luigi Ricci-Stolz (1852–1906), Italian composer * Marco Ricci (1676–1730), Italian Baroque painter * Nahéma Ricci, Canadian actress * Nina Ricci (designer) (1883–1970), French fashion designer * Nino Ricci (born 1959), Canadian novelist * Regolo Ricci (born 1955), Canadian painter and illustrator * Romina Ricci (born 1978), Argentine actress * Ruggiero Ricci (1918–2012 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Spinor
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group. Dirac spinors are important and interesting in numerous ways. Foremost, they are important as they do describe all of the known fundamental particle fermions in nature; this includes the electron and the quarks. Algebraically they behave, in a certain sense, as the "square root" of a vector. This is not readily apparent from direct examination, but it has slowly become clear over the last 60 years that spinorial representations are fundamental to geometry. For example, effectively all Riemannian manifolds can have spinors and spin connections built upon them, via the Clifford algebra. The Dirac spinor is specific to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Index Notation
In mathematics and computer programming, index notation is used to specify the elements of an array of numbers. The formalism of how indices are used varies according to the subject. In particular, there are different methods for referring to the elements of a list, a vector, or a matrix, depending on whether one is writing a formal mathematical paper for publication, or when one is writing a computer program. In mathematics It is frequently helpful in mathematics to refer to the elements of an array using subscripts. The subscripts can be integers or variables. The array takes the form of tensors in general, since these can be treated as multi-dimensional arrays. Special (and more familiar) cases are vectors (1d arrays) and matrices (2d arrays). The following is only an introduction to the concept: index notation is used in more detail in mathematics (particularly in the representation and manipulation of tensor operations). See the main article for further details. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gamma Matrix
In mathematical physics, the gamma matrices, \ \left\\ , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra \ \mathrm_(\mathbb) ~. It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic particles. Gamma matrices were introduced by Paul Dirac in 1928. In Dirac representation, the four contravariant gamma matrices are : \begin \gamma^0 &= \begin 1 & 0 & 0 & 0 \\ 0 & 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particle, elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple Mass in special relativity, definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure (mathematics), measure of the body's inertia, meaning the resistance to acceleration (change of velocity) when a net force is applied. The object's mass also determines the Force, strength of its gravitational attraction to other bodies. The SI base unit of mass is the kilogram (kg). In physics, mass is Mass versus weight, not the same as weight, even though mass is often determined by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coupling Constant
In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the " charges" of the bodies (i.e. the electric charge for electrostatic and the mass for Newtonian gravity) divided by the distance squared, r^2, between the bodies; thus: G in F=G m_1 m_2/r^2 for Newtonian gravity and k_\text in F=k_\textq_1 q_2/r^2 for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers. A modern and more general definition uses the Lagrangian \mathcal (or equivalently the Hamiltonian \mathcal) of a system. Usually, \mathcal (or \mathcal) of a system describing an interaction can be separated into a ''kinetic part'' T and an ''interaction part'' V: \mathcal=T-V (or \mathcal=T+V). In field theory, V always contains 3 fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Feynman Slash Notation
In the study of Dirac fields in quantum field theory, Richard Feynman introduced the convenient Feynman slash notation (less commonly known as the Dirac slash notation). If ''A'' is a covariant vector (i.e., a 1-form), : \ \stackrel\ \gamma^0 A_0 + \gamma^1 A_1 + \gamma^2 A_2 + \gamma^3 A_3 where ''γ'' are the gamma matrices. Using the Einstein summation notation, the expression is simply : \ \stackrel\ \gamma^\mu A_\mu. Identities Using the anticommutators of the gamma matrices, one can show that for any a_\mu and b_\mu, :\begin = a^\mu a_\mu \cdot I_4 = a^2 \cdot I_4 \\ + = 2 a \cdot b \cdot I_4. \end where I_4 is the identity matrix in four dimensions. In particular, :^2 = \partial^2 \cdot I_4. Further identities can be read off directly from the gamma matrix identities by replacing the metric tensor with inner products. For example, :\begin \gamma_\mu \gamma^\mu &= -2 \\ \gamma_\mu \gamma^\mu &= 4 a \cdot b \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dirac Adjoint
Paul Adrien Maurice Dirac ( ; 8 August 1902 – 20 October 1984) was an English mathematician and theoretical physicist who is considered to be one of the founders of quantum mechanics. Dirac laid the foundations for both quantum electrodynamics and quantum field theory. He was the Lucasian Professor of Mathematics at the University of Cambridge and a professor of physics at Florida State University. Dirac shared the 1933 Nobel Prize in Physics with Erwin Schrödinger for "the discovery of new productive forms of atomic theory". Dirac graduated from the University of Bristol with a first class honours Bachelor of Science degree in electrical engineering in 1921, and a first class honours Bachelor of Arts degree in mathematics in 1923. Dirac then graduated from the University of Cambridge with a PhD in physics in 1926, writing the first ever thesis on quantum mechanics. Dirac made fundamental contributions to the early development of both quantum mechanics and quantum electro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spinor
In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal transformation, infinitesimal) rotation, but unlike Euclidean vector, geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360° (see picture). It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors (although this is inaccurate and may be misleading; they are better viewed as "square roots" of Section (fiber bundle), sections of vector bundles – in the case of the exterior algebra bundle of the cotangent bundle, they thus become "square roots" of differential forms). It is also possible to associate a substantially similar notion of spinor to Minkowski space, in which cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrangian Density
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom. One motivation for the development of the Lagrangian formalism on fields, and more generally, for classical field theory, is to provide a clear mathematical foundation for quantum field theory, which is infamously beset by formal difficulties that make it unacceptable as a mathematical theory. The Lagrangians presented here are identical to their quantum equivalents, but, in treating the fields as classical fields, instead of being quantized, one can provide definitions and obtain solutions with properties compatible with the conventional formal approach to the mathematics of partial differential equations. This enabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Space-time
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three-dimensional space, three dimensions of space and the one dimension of time into a single four-dimensional continuum (measurement), continuum. Spacetime diagrams are useful in visualizing and understanding Special relativity, relativistic effects, such as how different observers perceive ''where'' and ''when'' events occur. Until the turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe). However, space and time took on new meanings with the Lorentz transformation and Special relativity, special theory of relativity. In 1908, Hermann Minkowski presented a geometric interpretation of special relativity that fused time and the three spatial dimensions into a single four-dimens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Soler Model
Soler may refer to: People with the surname Soler Arts and entertainment * Álvaro Soler (born 1991), Spanish singer-songwriter * Amalia Domingo Soler (1835–1909), Spanish writer * Andrés Soler (1898–1969), Mexican actor * Antonio Soler (composer) (1729–1783), Spanish baroque/classical era composer usually known as Padre ('Father') Antonio Soler * Antonio Soler (novelist) (born 1956), Spanish novelist, screenwriter and journalist * Domingo Soler (1901–1961), Mexican actor * Fernando Soler (1896–1979), Mexican film actor and film director * Francisco Gabilondo Soler (1907–1990), also known as ''Cri-Cri'', Mexican composer and performer of children songs * José María Soler (1929–2009), better known as Víctor Israel, Spanish film actor * Juan Soler (actor) (born 1966), Argentine-Mexican actor * Julián Soler (1907–1977), Mexican actor and film director * Pastora Soler, stage name of Pilar Sánchez Luque (born 1978), Spanish singer * Rebecca Soler, American voic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]