HOME





Non-wellfounded Mereology
In philosophy, specifically metaphysics, mereology is the study of parthood relationships. In mathematics and formal logic, wellfoundedness prohibits \cdots for any ''x''. Thus non-wellfounded mereology treats circular, cyclical, repetitive, or other eventual self-containment. More formally, non-wellfounded s may exhibit \cdots for some ''x'' whereas well-founded orders prohibit that.


See also

* *

picture info

Philosophy
Philosophy ('love of wisdom' in Ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, Value (ethics and social sciences), value, mind, and language. It is a rational and critical inquiry that reflects on its methods and assumptions. Historically, many of the individual sciences, such as physics and psychology, formed part of philosophy. However, they are considered separate academic disciplines in the modern sense of the term. Influential traditions in the history of philosophy include Western philosophy, Western, Islamic philosophy, Arabic–Persian, Indian philosophy, Indian, and Chinese philosophy. Western philosophy originated in Ancient Greece and covers a wide area of philosophical subfields. A central topic in Arabic–Persian philosophy is the relation between reason and revelation. Indian philosophy combines the Spirituality, spiritual problem of how to reach Enlightenment in Buddhism, enlighten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metaphysics
Metaphysics is the branch of philosophy that examines the basic structure of reality. It is traditionally seen as the study of mind-independent features of the world, but some theorists view it as an inquiry into the conceptual framework of human understanding. Some philosophers, including Aristotle, designate metaphysics as first philosophy to suggest that it is more fundamental than other forms of philosophical inquiry. Metaphysics encompasses a wide range of general and abstract topics. It investigates the nature of existence, the features all entities have in common, and their division into categories of being. An influential division is between particulars and universals. Particulars are individual unique entities, like a specific apple. Universals are general features that different particulars have in common, like the color . Modal metaphysics examines what it means for something to be possible or necessary. Metaphysicians also explore the concepts of space, time, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mereology
Mereology (; from Greek μέρος 'part' (root: μερε-, ''mere-'') and the suffix ''-logy'', 'study, discussion, science') is the philosophical study of part-whole relationships, also called ''parthood relationships''. As a branch of metaphysics, mereology examines the connections between parts and their wholes, exploring how components interact within a system. This theory has roots in ancient philosophy, with significant contributions from Plato, Aristotle, and later, medieval and Renaissance thinkers like Thomas Aquinas and John Duns Scotus. Mereology was formally axiomatized in the 20th century by Polish logician Stanisław Leśniewski, who introduced it as part of a comprehensive framework for logic and mathematics, and coined the word "mereology". Mereological ideas were influential in early , and formal mereology has continued to be used by a minority in works on the . Different axiomatizations of mereology have been applied in , used in to analyze "mass terms", use ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to wor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wellfoundedness
In mathematics, a binary relation is called well-founded (or wellfounded or foundational) on a set or, more generally, a class if every non-empty subset has a minimal element with respect to ; that is, there exists an such that, for every , one does not have . In other words, a relation is well-founded if: (\forall S \subseteq X)\; \neq \varnothing \implies (\exists m \in S) (\forall s \in S) \lnot(s \mathrel m) Some authors include an extra condition that is set-like, i.e., that the elements less than any given element form a set. Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, meaning there is no infinite sequence of elements of such that for every natural number . In order theory, a partial order is called well-founded if the corresponding strict order is a well-founded relation. If the order is a total order then it is called a well-order. In set theory, a set is called a well-f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Order
In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is reflexive, antisymmetric, and transitive. A partially ordered set (poset for short) is an ordered pair P=(X,\leq) consisting of a set X (called the ''ground set'' of P) and a partial order \leq on X. When the meaning is clear from context and there is no ambiguity about the partial order, the set X itself is sometimes called a poset. Partial order relations The term ''partial order'' usually refers to the reflexive partial order relations, referred to in this article as ''non-strict'' partial orders. However som ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aczel's Anti-foundation Axiom
In the foundations of mathematics, Aczel's anti-foundation axiom is an axiom set forth by , as an alternative to the axiom of foundation in Zermelo–Fraenkel set theory. It states that every accessible pointed directed graph corresponds to exactly one set. In particular, according to this axiom, the graph consisting of a single vertex with a loop corresponds to a set that contains only itself as element, i.e. a Quine atom. A set theory obeying this axiom is necessarily a non-well-founded set theory. Accessible pointed graphs An accessible pointed graph is a directed graph with a distinguished vertex (the "root") such that for any node in the graph there is at least one path in the directed graph from the root to that node. The anti-foundation axiom postulates that each such directed graph corresponds to the membership structure of exactly one set. For example, the directed graph with only one node and an edge from that node to itself corresponds to a set of the form ''x'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Peter Aczel
Peter Henry George Aczel (; 31 October 1941 – 1 August 2023) was a British mathematician, logician and Emeritus joint Professor in the Department of Computer Science and the School of Mathematics at the University of Manchester. He is known for his work in non-well-founded set theory, constructive set theory, and Frege structures. Education Aczel completed his Bachelor of Arts in Mathematics in 1963 followed by a DPhil at the University of Oxford in 1966 under the supervision of John Crossley. Career and research After two years of visiting positions at the University of Wisconsin–Madison and Rutgers University, Aczel took a position at the University of Manchester. He has also held visiting positions at the University of Oslo, California Institute of Technology, Utrecht University, Stanford University, and Indiana University Bloomington. He was a visiting scholar at the Institute for Advanced Study in 2012. Aczel was on the editorial board of the ''Notre Dame Journal o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Barwise
Kenneth Jon Barwise (; June 29, 1942 – March 5, 2000) was an American mathematician, philosopher and logician who proposed some fundamental revisions to the way that logic is understood and used. Education and career He was born in Independence, Missouri, to Kenneth T. and Evelyn Barwise. A pupil of Solomon Feferman at Stanford University, Barwise started his research in infinitary logic. After positions as assistant professor at Yale University and the University of Wisconsin, during which time his interests turned to natural language, he returned to Stanford in 1983 to direct the Center for the Study of Language and Information (CSLI). He began teaching at Indiana University in 1990. He was elected a Fellow of the American Academy of Arts and Sciences in 1999. In his last year, Barwise was invited to give the 2000 Gödel Lecture; he died prior to the lecture. Philosophical and logical work Barwise contended that, by being explicit about the context in which a propositi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steve Awodey
Steven M. Awodey (; born 1959) is an American mathematician and logician. He is a Professor of Philosophy and Mathematics at Carnegie Mellon University. Biography Awodey studied mathematics and philosophy at the University of Marburg and the University of Chicago. He earned his Ph.D. from Chicago under Saunders Mac Lane in 1997. He is an active researcher in the areas of category theory and logic, and has also written on the philosophy of mathematics. He is one of the originators of the field of homotopy type theory. He was a member of the School of Mathematics at the Institute for Advanced Study The Institute for Advanced Study (IAS) is an independent center for theoretical research and intellectual inquiry located in Princeton, New Jersey. It has served as the academic home of internationally preeminent scholars, including Albert Ein ... in 2012–13. Bibliography * * References External links * * * * * {{DEFAULTSORT:Awodey, Steve American logicians 20th-cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]