HOME



picture info

Nilpotent Group
In mathematics, specifically group theory, a nilpotent group ''G'' is a group that has an upper central series that terminates with ''G''. Equivalently, it has a central series of finite length or its lower central series terminates with . Intuitively, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable, and for finite nilpotent groups, two elements having relatively prime orders must commute. It is also true that finite nilpotent groups are supersolvable. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov. Nilpotent groups arise in Galois theory, as well as in the classification of groups. They also appear prominently in the classification of Lie groups. Analogous terms are used for Lie algebras (using the Lie bracket) including nilpotent, lower central series, and upper central series. Definition The definition uses the idea of a central series for a gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lie Bracket Of Vector Fields
In the mathematical field of differential topology, the Lie bracket of vector fields, also known as the Jacobi–Lie bracket or the commutator of vector fields, is an operator that assigns to any two vector fields X and Y on a smooth manifold M a third vector field denoted ,Y/math>. Conceptually, the Lie bracket ,Y/math> is the derivative of Y along the flow generated by X, and is sometimes denoted ''\mathcal_X Y'' ("Lie derivative of Y along X"). This generalizes to the Lie derivative of any tensor field along the flow generated by X. The Lie bracket is an R- bilinear operation and turns the set of all smooth vector fields on the manifold M into an (infinite-dimensional) Lie algebra. The Lie bracket plays an important role in differential geometry and differential topology, for instance in the Frobenius integrability theorem, and is also fundamental in the geometric theory of nonlinear control systems. V. I. Arnold refers to this as the "fisherman derivative", ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triangular Matrix
In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries ''above'' the main diagonal are zero. Similarly, a square matrix is called if all the entries ''below'' the main diagonal are zero. Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis. By the LU decomposition algorithm, an invertible matrix may be written as the matrix multiplication, product of a lower triangular matrix ''L'' and an upper triangular matrix ''U'' if and only if all its leading principal minor (linear algebra), minors are non-zero. Description A matrix of the form :L = \begin \ell_ & & & & 0 \\ \ell_ & \ell_ & & & \\ \ell_ & \ell_ & \ddots & & \\ \vdots & \vdots & \ddots & \ddots & \\ \ell_ & \ell_ & \ldots & \ell_ & \ell_ \end is called a lower trian ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semidihedral Group
In mathematics, the quasi-dihedral groups, also called semi-dihedral groups, are certain non-abelian groups of order a power of 2. For every positive integer ''n'' greater than or equal to 4, there are exactly four isomorphism classes of non-abelian groups of order 2''n'' which have a cyclic subgroup of index 2. Two are well known, the generalized quaternion group and the dihedral group. One of the remaining two groups is often considered particularly important, since it is an example of a 2-group of maximal nilpotency class. In Bertram Huppert's text ''Endliche Gruppen'', this group is called a "Quasidiedergruppe". In Daniel Gorenstein's text, ''Finite Groups'', this group is called the "semidihedral group". Dummit and Foote refer to it as the "quasidihedral group"; we adopt that name in this article. All give the same presentation for this group: :\langle r,s \mid r^ = s^2 = 1,\ srs = r^\rangle\,\!. The other non-abelian 2-group with cyclic subgroup of index 2 is not gi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dihedral Group
In mathematics, a dihedral group is the group (mathematics), group of symmetry, symmetries of a regular polygon, which includes rotational symmetry, rotations and reflection symmetry, reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, or refers to the symmetries of the n-gon, -gon, a group of order . In abstract algebra, refers to this same dihedral group. This article uses the geometric convention, . Definition The word "dihedral" comes from "di-" and "-hedron". The latter comes from the Greek word hédra, which means "face of a geometrical solid". Overall it thus refers to the two faces of a polygon. Elements A regular polygon with n sides has 2n different symmetries: n rotational symmetry, rotational symmetries and n reflection symmetry, reflection symmetries. Usually, we take n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-group
In mathematics, specifically group theory, given a prime number ''p'', a ''p''-group is a group in which the order of every element is a power of ''p''. That is, for each element ''g'' of a ''p''-group ''G'', there exists a nonnegative integer ''n'' such that the product of ''pn'' copies of ''g'', and not fewer, is equal to the identity element. The orders of different elements may be different powers of ''p''. Abelian ''p''-groups are also called ''p''-primary or simply primary. A finite group is a ''p''-group if and only if its order (the number of its elements) is a power of ''p''. Given a finite group ''G'', the Sylow theorems guarantee the existence of a subgroup of ''G'' of order ''pn'' for every prime power ''pn'' that divides the order of ''G''. Every finite ''p''-group is nilpotent. The remainder of this article deals with finite ''p''-groups. For an example of an infinite abelian ''p''-group, see Prüfer group, and for an example of an infinite simple ''p' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Product
In mathematics, a direct product of objects already known can often be defined by giving a new one. That induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. The categorical product is an abstraction of these notions in the setting of category theory. Examples are the product of sets, groups (described below), rings, and other algebraic structures. The product of topological spaces is another instance. The direct sum is a related operation that agrees with the direct product in some but not all cases. Examples * If \R is thought of as the set of real numbers without further structure, the direct product \R \times \R is just the Cartesian product \. * If \R is thought of as the group of real numbers under addition, the direct product \R\times \R still has \ as its underlying set. The difference between this and the preceding examples is that \R \times \R is now a group and so how to add their elements must also be s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Order Of A Group
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is ''infinite''. The ''order'' of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element of a group, is thus the smallest positive integer such that , where denotes the identity element of the group, and denotes the product of copies of . If no such exists, the order of is infinite. The order of a group is denoted by or , and the order of an element is denoted by or , instead of \operatorname(\langle a\rangle), where the brackets denote the generated group. Lagrange's theorem states that for any subgroup of a finite group , the order of the subgroup divides the order of the group; that is, is a divisor of . In particular, the order of any element is a divisor of . Example The symmetric group S3 has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Center (group Theory)
In abstract algebra, the center of a group (mathematics), group is the set (mathematics), set of elements that commutative, commute with every element of . It is denoted , from German ''wikt:Zentrum, Zentrum,'' meaning ''center''. In set-builder notation, :. The center is a normal subgroup, Z(G)\triangleleft G, and also a characteristic subgroup, characteristic subgroup, but is not necessarily fully characteristic subgroup, fully characteristic. The quotient group, , is group isomorphism, isomorphic to the inner automorphism group, . A group is abelian if and only if . At the other extreme, a group is said to be centerless if is trivial group, trivial; i.e., consists only of the identity element. The elements of the center are central elements. As a subgroup The center of ''G'' is always a subgroup (mathematics), subgroup of . In particular: # contains the identity element of , because it commutes with every element of , by definition: , where is the identity; # If an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quaternion Group
In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a nonabelian group, non-abelian group (mathematics), group of Group order, order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. It is given by the presentation of a group, group presentation :\mathrm_8 = \langle \bar,i,j,k \mid \bar^2 = e, \;i^2 = j^2 = k^2 = ijk = \bar \rangle , where ''e'' is the identity element and commutativity, commutes with the other elements of the group. These relations, discovered by W. R. Hamilton, also generate the quaternions as an algebra over the real numbers. Another presentation of Q8 is :\mathrm_8 = \langle a,b \mid a^4 = e, a^2 = b^2, ba = a^b\rangle. Like many other finite groups, it Inverse Galois problem, can be realized as the #Galois group, Galois group of a certain field of algebraic numbers. Compared to dihedral group The quaternion group Q8 has the same order as the dihedral group Examples of groups#The symmetry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation ∗, a subset of is called a subgroup of if also forms a group under the operation ∗. More precisely, is a subgroup of if the Restriction (mathematics), restriction of ∗ to is a group operation on . This is often denoted , read as " is a subgroup of ". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group is a subgroup which is a subset, proper subset of (that is, ). This is often represented notationally by , read as " is a proper subgroup of ". Some authors also exclude the trivial group from being proper (that is, ). If is a subgroup of , then is sometimes called an overgroup of . The same definitions apply more generally when is an arbitrary se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]