Negative Multinomial Distribution
In probability theory and statistics, the negative multinomial distribution is a generalization of the negative binomial distribution (NB(''x''0, ''p'')) to more than two outcomes.Le Gall, F. The modes of a negative multinomial distribution, Statistics & Probability Letters, Volume 76, Issue 6, 15 March 2006, Pages 619-624, ISSN 0167-715210.1016/j.spl.2005.09.009 As with the univariate negative binomial distribution, if the parameter x_0 is a positive integer, the negative multinomial distribution has an urn model interpretation. Suppose we have an experiment that generates ''m''+1≥2 possible outcomes, , each occurring with non-negative probabilities respectively. If sampling proceeded until ''n'' observations were made, then would have been multinomially distributed. However, if the experiment is stopped once ''X''0 reaches the predetermined value ''x''0 (assuming ''x''0 is a positive integer), then the distribution of the ''m''-tuple is ''negative multinomial''. Th ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Covariance Matrix
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions. As an example, the variation in a collection of random points in two-dimensional space cannot be characterized fully by a single number, nor would the variances in the x and y directions contain all of the necessary information; a 2 \times 2 matrix would be necessary to fully characterize the two-dimensional variation. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). The covariance matrix of a random vector \mathbf is typically denoted by \operatorname_, \Sigma or S. Definition Throughout this article, boldfaced u ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Dirichlet Negative Multinomial Distribution
Johann Peter Gustav Lejeune Dirichlet (; ; 13 February 1805 – 5 May 1859) was a German mathematician. In number theory, he proved special cases of Fermat's last theorem and created analytic number theory. In analysis, he advanced the theory of Fourier series and was one of the first to give the modern formal definition of a function. In mathematical physics, he studied potential theory, boundary-value problems, and heat diffusion, and hydrodynamics. Although his surname is Lejeune Dirichlet, he is commonly referred to by his mononym Dirichlet, in particular for results named after him. Biography Early life (1805–1822) Gustav Lejeune Dirichlet was born on 13 February 1805 in Düren, a town on the left bank of the Rhine which at the time was part of the First French Empire, reverting to Prussia after the Congress of Vienna in 1815. His father Johann Arnold Lejeune Dirichlet was the postmaster, merchant, and city councilor. His paternal grandfather had come to Düren from Ri ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Conjugate Prior
In Bayesian probability theory, if, given a likelihood function p(x \mid \theta), the posterior distribution p(\theta \mid x) is in the same probability distribution family as the prior probability distribution p(\theta), the prior and posterior are then called conjugate distributions with respect to that likelihood function and the prior is called a conjugate prior for the likelihood function p(x \mid \theta). A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may clarify how a likelihood function updates a prior distribution. The concept, as well as the term "conjugate prior", were introduced by Howard Raiffa and Robert Schlaifer in their work on Bayesian decision theory.Howard Raiffa and Robert Schlaifer. ''Applied Statistical Decision Theory''. Division of Research, Graduate School of Business Administration, Harvard University, 1961. A similar c ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Inverted Dirichlet Distribution
In statistics, the inverted Dirichlet distribution is a multivariate generalization of the beta prime distribution, and is related to the Dirichlet distribution. It was first described by Tiao and Cuttman in 1965. The distribution has a density function given by : p\left(x_1,\ldots, x_k\right) = \frac x_1^\cdots x_k^\times\left(1+\sum_^k x_i\right)^,\qquad x_i>0. The distribution has applications in statistical regression and arises naturally when considering the multivariate Student distribution. It can be characterized by its mixed moments: : E\left prod_^kx_i^\right= \frac\prod_^k\frac provided that q_j>-\nu_j, 1\leqslant j\leqslant k and \nu_>q_1+\ldots+q_k. The inverted Dirichlet distribution is conjugate to the negative multinomial distribution if a generalized form of odds ratio is used instead of the categories' probabilities- if the negative multinomial parameter vector is given by p, by changing parameters of the negative multinomial to x_i = \frac, i = 1\ldots ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Multinomial Distribution
In probability theory, the multinomial distribution is a generalization of the binomial distribution. For example, it models the probability of counts for each side of a ''k''-sided die rolled ''n'' times. For ''n'' statistical independence, independent trials each of which leads to a success for exactly one of ''k'' categories, with each category having a given fixed success probability, the multinomial distribution gives the probability of any particular combination of numbers of successes for the various categories. When ''k'' is 2 and ''n'' is 1, the multinomial distribution is the Bernoulli distribution. When ''k'' is 2 and ''n'' is bigger than 1, it is the binomial distribution. When ''k'' is bigger than 2 and ''n'' is 1, it is the categorical distribution. The term "multinoulli" is sometimes used for the categorical distribution to emphasize this four-way relationship (so ''n'' determines the suffix, and ''k'' the prefix). The Bernoulli distribution models the outcome of a si ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Negative Binomial Distribution
In probability theory and statistics, the negative binomial distribution, also called a Pascal distribution, is a discrete probability distribution that models the number of failures in a sequence of independent and identically distributed Bernoulli trials before a specified/constant/fixed number of successes r occur. For example, we can define rolling a 6 on some dice as a success, and rolling any other number as a failure, and ask how many failure rolls will occur before we see the third success (r=3). In such a case, the probability distribution of the number of failures that appear will be a negative binomial distribution. An alternative formulation is to model the number of total trials (instead of the number of failures). In fact, for a specified (non-random) number of successes , the number of failures is random because the number of total trials is random. For example, we could use the negative binomial distribution to model the number of days (random) a certain machin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Method Of Moments (statistics)
In statistics, the method of moments is a method of estimation of population parameters. The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest. Those expressions are then set equal to the sample moments. The number of such equations is the same as the number of parameters to be estimated. Those equations are then solved for the parameters of interest. The solutions are estimates of those parameters. The method of moments was introduced by Pafnuty Chebyshev in 1887 in the proof of the central limit theorem. The idea of matching empirical moments of a distribution to the population moments dates back at least to Karl Pearson. Method Suppose that the parameter \theta = (\theta_1, \theta_2, \dots, \theta_k) characterizes the distribution f_W(w; \theta) of the random variable W. Supp ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Determinants
In mathematics, the determinant is a scalar-valued function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism. However, if the determinant is zero, the matrix is referred to as singular, meaning it does not have an inverse. The determinant is completely determined by the two following properties: the determinant of a product of matrices is the product of their determinants, and the determinant of a triangular matrix is the product of its diagonal entries. The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end = aei + bfg + cdh - ceg - bdi - afh. The determinant of an matrix can be defin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Correlation Matrix
In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are '' linearly'' related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the demand curve. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example, there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling. However, in ge ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
![]() |
Probability Theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms of probability, axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure (mathematics), measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event (probability theory), event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of determinism, non-deterministic or uncertain processes or measured Quantity, quantities that may either be single occurrences or evolve over time in a random fashion). Although it is no ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
Infinite Divisibility (probability)
Infinite may refer to: Mathematics * Infinite set, a set that is not a finite set * Infinity, an abstract concept describing something without any limit Music Performers * Infinite (group), a South Korean boy band * Infinite (rapper), Canadian rapper Albums * ''Infinite'' (Deep Purple album), 2017 * ''Infinite'' (Eminem album) or the title song (see below), 1996 * ''Infinite'' (Sam Concepcion album), 2013 * ''Infinite'' (Stratovarius album), 2000 * ''The Infinite'' (album), by Dave Douglas, 2002 *''Infinite'', by Kazumi Watanabe, 1971 *''Infinite'', an EP by Haywyre, 2012 Songs * "Infinite" (Beni Arashiro song), 2004 * "Infinite" (Eminem song), 1996 * "Infinite" (Notaker song), 2016 *"Infinite", by Forbidden from '' Twisted into Form'', 1990 Other uses * ''Infinite'' (film), a 2021 science fiction film *" The Infinites", a 1953 science fiction short story by Philip K. Dick *The Infinites, a fictional group of cosmic beings in the '' Avengers Infinity'' comic book series *I ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |