Inverted Dirichlet Distribution
   HOME

TheInfoList



OR:

In
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, the inverted Dirichlet distribution is a multivariate generalization of the
beta prime distribution In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kindJohnson et al (1995), p 248) is an absolutely continuous probability distribution. If p\in ,1/math ...
, and is related to the
Dirichlet distribution In probability and statistics, the Dirichlet distribution (after Peter Gustav Lejeune Dirichlet), often denoted \operatorname(\boldsymbol\alpha), is a family of continuous multivariate probability distributions parameterized by a vector of pos ...
. It was first described by Tiao and Cuttman in 1965. The distribution has a density function given by : p\left(x_1,\ldots, x_k\right) = \frac x_1^\cdots x_k^\times\left(1+\sum_^k x_i\right)^,\qquad x_i>0. The distribution has applications in statistical regression and arises naturally when considering the multivariate Student distribution. It can be characterized by its mixed moments: : E\left prod_^kx_i^\right= \frac\prod_^k\frac provided that q_j>-\nu_j, 1\leqslant j\leqslant k and \nu_>q_1+\ldots+q_k. The inverted Dirichlet distribution is conjugate to the negative multinomial distribution if a generalized form of
odds ratio An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B ...
is used instead of the categories' probabilities- if the negative multinomial parameter vector is given by p, by changing parameters of the negative multinomial to x_i = \frac, i = 1\ldots k where p_0 = 1 - \sum_^ p_i. T. Bdiri et al. have developed several models that use the inverted Dirichlet distribution to represent and model non-Gaussian data. They have introduced finite and infinite mixture models of inverted Dirichlet distributions using the
Newton–Raphson In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a ...
technique to estimate the parameters and the
Dirichlet process In probability theory, Dirichlet processes (after the distribution associated with Peter Gustav Lejeune Dirichlet) are a family of stochastic processes whose realizations are probability distributions. In other words, a Dirichlet process is a pro ...
to model infinite mixtures. T. Bdiri et al. have also used the inverted Dirichlet distribution to propose an approach to generate
Support Vector Machine In machine learning, support vector machines (SVMs, also support vector networks) are supervised max-margin models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laborato ...
kernels basing on
Bayesian inference Bayesian inference ( or ) is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available. Fundamentally, Bayesian infer ...
and another approach to establish
hierarchical clustering In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis that seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two ...
.


References

Multivariate continuous distributions Conjugate prior distributions Exponential family distributions Continuous distributions {{statistics-stub