NGC 6383
HD 159176, also known as Boss 4444 and V1036 Scorpii, is a variable star about 2,800 light years from the Earth, in the constellation Scorpius. It is a 5th magnitude star, so it should be visible to the naked eye of an observer far from city lights. HD 159176 is the brightest star in the young open cluster NGC 6383. It is a binary star composed of two nearly identical O stars in a circular orbit. In 1930, Robert Trumpler discovered that HD 159176 is a spectroscopic binary. He noted that the two stars have very nearly the same brightness and spectral type. In addition, he was observing at the Lick Observatory, so the far southern declination of the star meant it could only be observed near transit. Those three things together prevented him from unambiguously measuring the orbital period. The first full set of orbital elements, including the day period, was derived by Peter Conti ''et al.'' in 1975. Also in 1975, photometric observations by J. C. Thomas showed that H ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
V1036ScoLightCurve
V1, V01 or V-1 can refer to version one (for anything) (e.g., see version control) V1, V01 or V-1 may also refer to: In aircraft * V-1 flying bomb, a World War II German weapon * V1 speed, the maximum speed at which an aircraft pilot may abort a takeoff without causing a runway overrun * Vultee V-1, an American single-engine airliner of the 1930s * Fokker V.1, a German parasol monoplane experimental fighter prototype, built in 1916 * The first prototype/experimental ''(Versuchs)'' airframe of nearly any German WW II-era military aircraft Vessels * V1-class destroyer, a German World War I destroyer class * USS V-1, 1924–1931 designation of the USS ''Barracuda'' (SS-163), first of the US "V-boat" series of submarines * V1, a rudderless single-paddler outrigger canoe In medicine * V1, the primary visual cortex * V1, the ophthalmic nerve, first division of the trigeminal nerve * V1, one of six precordial leads in electrocardiography In astronomy * V1, or ''Hubble variable num ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robert Julius Trumpler
Robert Julius Trumpler (until 1915 Robert Trümpler, born October 2, 1886 in Zürich, Switzerland; died September 10, 1956 in Berkeley, United States) was a Swiss- American astronomer. Career After initial schooling, Trumpler entered the Universität Zürich but later transferred to the University of Göttingen where he earned his PhD in 1910. In 1915, during World War I, he emigrated to the United States and joined the University of California. He took a position at Allegheny Observatory, and later went to Lick Observatory. In 1921, he became a naturalized citizen of the United States. He was elected a member of the United States National Academy of Sciences in 1932. He is most noted for observing that the brightness of the more distant open clusters was lower than expected, and the stars appeared more red. This was explained by the interstellar dust scattered through the galaxy, resulting in the absorption (extinction) of light or interstellar extinction of light. Trumpler f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henry Draper Catalogue Objects
Henry may refer to: People *Henry (given name) *Henry (surname) * Henry Lau, Canadian singer and musician who performs under the mononym Henry Royalty * Portuguese royalty ** King-Cardinal Henry, King of Portugal ** Henry, Count of Portugal, Henry of Burgundy, Count of Portugal (father of Portugal's first king) ** Prince Henry the Navigator, Infante of Portugal ** Infante Henrique, Duke of Coimbra (born 1949), the sixth in line to Portuguese throne * King of Germany **Henry the Fowler (876–936), first king of Germany * King of Scots (in name, at least) ** Henry Stuart, Lord Darnley (1545/6–1567), consort of Mary, queen of Scots ** Henry Benedict Stuart, the 'Cardinal Duke of York', brother of Bonnie Prince Charlie, who was hailed by Jacobites as Henry IX * Four kings of Castile: **Henry I of Castile **Henry II of Castile **Henry III of Castile **Henry IV of Castile * Five kings of France, spelt ''Henri'' in Modern French since the Renaissance to italianize the name and to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hipparcos Objects
''Hipparcos'' was a scientific satellite of the European Space Agency (ESA), launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial objects on the sky. This permitted the first high-precision measurements of the intrinsic brightnesses (compared to the less precise apparent brightness), proper motions, and parallaxes of stars, enabling better calculations of their distance and tangential velocity. When combined with radial velocity measurements from spectroscopy, astrophysicists were able to finally measure all six quantities needed to determine the motion of stars. The resulting ''Hipparcos Catalogue'', a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision ''Tycho Catalogue'' of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. ''Hipp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stellar Wind
A stellar wind is a flow of gas ejected from the upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spherically symmetric. Different types of stars have different types of stellar winds. Post- main-sequence stars nearing the ends of their lives often eject large quantities of mass in massive ( \scriptstyle \dot > 10^ solar masses per year), slow (v = 10 km/s) winds. These include red giants and supergiants, and asymptotic giant branch stars. These winds are understood to be driven by radiation pressure on dust condensing in the upper atmosphere of the stars. Young T Tauri stars often have very powerful stellar winds. Massive stars of types O and B have stellar winds with lower mass loss rates (\scriptstyle \dot 1–2000 km/s). Such winds are driven by radiation pressure on the resonance absorption lines of heavy elements such as carbo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
X-ray
X-rays (or rarely, ''X-radiation'') are a form of high-energy electromagnetic radiation. In many languages, it is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it in 1895 and named it ''X-radiation'' to signify an unknown type of radiation.Novelline, Robert (1997). ''Squire's Fundamentals of Radiology''. Harvard University Press. 5th edition. . X-ray wavelengths are shorter than those of ultraviolet rays and longer than those of gamma rays. There is no universally accepted, strict definition of the bounds of the X-ray band. Roughly, X-rays have a wavelength ranging from 10 nanometers to 10 picometers, corresponding to frequencies in the range of 30 petahertz to 30 exahertz ( to ) and photon energies in the range of 100 eV to 100 keV, respectively. X-rays can penetrate many solid substances such as construction materials and living tissue, so X-ray radiography is widely used in medi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eclipsing Binary
A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in which case they are called ''visual binaries''. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy (''spectroscopic binaries'') or astrometry (''astrometric binaries''). If a binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit each other; these pairs are called ''eclipsing binaries'', or, together with other binaries that change brightness as they orbit, ''photometric binaries''. If components in binary star systems are close enough they can gravitationally distort their mutual outer stellar atmospheres. In some cases, the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Struve–Sahade Effect
The Struve–Sahade effect (S–S effect) occurs in a double-lined spectroscopic binary star system when the strength of the spectral lines of the components varies during the orbital motion. A spectroscopic binary is called double-lined when the absorption lines of both stars can be observed with a spectroscope. As each member of the star system approaches the observer in turn, the absorption lines of that star are shifted toward the blue end of the optical spectrum by the Doppler effect. Likewise, as a star moves away, its lines are shifted toward the red end of the spectrum. Each of these absorption lines has a characteristic strength that depends on the physical properties of the photosphere. The Struve–Sahade effect occurs when these lines become anomalously weaker as a star's spectrum is red-shifted, and stronger when it is blue-shifted, most noticeable in the secondary component. This effect is observed in the bright naked eye binary Spica, which consists of two class B st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astronomical Spectroscopy
Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the Doppler shift. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as planets, nebulae, galaxies, and active galactic nuclei. Background Astronomical spectroscopy is used to measure three major bands of radiation in the electromagnetic spectrum: visible light, radio waves, and X-rays. While all spectroscopy looks at specific bands of the spectrum, different methods are required to acquire the signal depending on the frequency. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rotating Ellipsoidal Variable
Rotating ellipsoidal variables are a class of variable star. They are close binary systems whose components are ellipsoidal. They are not eclipsing, but fluctuations in apparent magnitude occur due to changes in the amount of light emitting area visible to the observer. Typical brightness fluctuations do not exceed 0.1 magnitudes. The brightest rotating ellipsoidal variable is Spica Spica is the brightest object in the constellation of Virgo and one of the 20 brightest stars in the night sky. It has the Bayer designation α Virginis, which is Latinised to Alpha Virginis and abbreviated Alpha Vir or α Vir. Anal ... (α Virginis). References * Morris, S.L. "The Ellipsoidal Variable Stars", ApJ 295: 143–152, 1985 August 1 * Samus N.N., Durlevich O.V., et al. ''Combined General Catalog of Variable Stars (GCVS4.2, 2004 Ed.)'' * Variable stars * {{var-star-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orbital Elements
Orbital elements are the parameters required to uniquely identify a specific orbit. In celestial mechanics these elements are considered in two-body systems using a Kepler orbit. There are many different ways to mathematically describe the same orbit, but certain schemes, each consisting of a set of six parameters, are commonly used in astronomy and orbital mechanics. A real orbit and its elements change over time due to gravitational perturbations by other objects and the effects of general relativity. A Kepler orbit is an idealized, mathematical approximation of the orbit at a particular time. Keplerian elements The traditional orbital elements are the six Keplerian elements, after Johannes Kepler and his laws of planetary motion. When viewed from an inertial frame, two orbiting bodies trace out distinct trajectories. Each of these trajectories has its focus at the common center of mass. When viewed from a non-inertial frame centered on one of the bodies, only the traje ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astronomical Transit
In astronomy, a transit (or astronomical transit) is a phenomenon when a celestial body passes directly between a larger body and the observer. As viewed from a particular vantage point, the transiting body appears to move across the face of the larger body, covering a small portion of it. The word "transit" refers to cases where the nearer object appears smaller than the more distant object. Cases where the nearer object appears larger and completely hides the more distant object are known as ''occultations''. However, the probability of seeing a transiting planet is low because it is dependent on the alignment of the three objects in a nearly perfectly straight line. Many parameters of a planet and its parent star can be determined based on the transit. In the Solar System One example of a transit involves the motion of a planet between a terrestrial observer and the Sun. This can happen only with inferior planets, namely Mercury and Venus (see transit of Mercury ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |