Mutually Unbiased Bases
In quantum information theory, a set of bases in Hilbert space C''d'' are said to be mutually unbiased if when a system is prepared in an eigenstate of one of the bases, then all outcomes of the measurement with respect to the other basis are predicted to occur with an equal probability of 1/''d''. Overview The notion of mutually unbiased bases was first introduced by Julian Schwinger in 1960, and the first person to consider applications of mutually unbiased bases was I. D. Ivanovic in the problem of quantum state determination. Mutually unbiased bases (MUBs) and their existence problem is now known to have several closely related problems and equivalent avatars in several other branches of mathematics and quantum sciences, such as SIC-POVMs, finite projective/affine planes, complex Hadamard matrices and more #Related problems">Related problems MUBs are important for quantum key distribution, more specifically in secure quantum key exchange.M. Planat et al, A Survey of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MUB Bases Plot , a left wing Assyrian nationalist organization in the Middle East
{{disambig ...
MUB may refer to: * Maun Airport, Botswana, from its IATA airport code * Medical University of Bahrain * Memorial Union Building (other), any one of several buildings * Musselburgh railway station, Scotland, from its National Rail code * Mutually unbiased bases, a measurement concept in quantum information theory * Bethnahrin National Council The Bethnahrin National Council or Mesopotamia National Council (, MUB), formerly the Bethnahrin Freedom Party (, GHB) and the Patriotic Revolutionary Organization of Bethnahrin (, PROB) is a militant socialist Assyrian-Syriac party in the Dawron ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnitude (mathematics)
In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering (or ranking) of the class of objects to which it belongs. Magnitude as a concept dates to Ancient Greece and has been applied as a measure of distance from one object to another. For numbers, the absolute value of a number is commonly applied as the measure of units between a number and zero. In vector spaces, the Euclidean norm is a measure of magnitude used to define a distance between two points in space. In physics, magnitude can be defined as quantity or distance. An order of magnitude is typically defined as a unit of distance between one number and another's numerical places on the decimal scale. History Ancient Greeks distinguished between several types of magnitude, including: * Positive fractions * Line segments (orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physics Letters A
''Physics Letters'' was a scientific journal published from 1962 to 1966, when it split in two series now published by Elsevier Elsevier ( ) is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell (journal), Cell'', the ScienceDirect collection of electronic journals, ...: *''Physics Letters A'': condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. *''Physics Letters B'': nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics. ''Physics Letters B'' is part of the SCOAP3 initiative. References See also * List of periodicals published by Elsevier ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kochen–Specker Theorem
In quantum mechanics, the Kochen–Specker (KS) theorem, also known as the Bell–KS theorem, is a "no-go" theorem proved by John S. Bell in 1966 and by Simon B. Kochen and Ernst Specker in 1967. It places certain constraints on the permissible types of hidden-variable theories, which try to explain the predictions of quantum mechanics in a context-independent way. The version of the theorem proved by Kochen and Specker also gave an explicit example for this constraint in terms of a finite number of state vectors. The Kochen–Specker theorem is a complement to Bell's theorem. While Bell's theorem established nonlocality to be a feature of any hidden-variable theory that recovers the predictions of quantum mechanics, the Kochen–Specker theorem established contextuality to be an inevitable feature of such theories. The theorem proves that there is a contradiction between two basic assumptions of the hidden-variable theories intended to reproduce the results of quan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Plane (incidence Geometry)
In geometry, an affine plane is a system of points and lines that satisfy the following axioms: * Any two distinct points lie on a unique line. * Given any line and any point not on that line there is a unique line which contains the point and does not meet the given line. ( Playfair's axiom) * There exist four points such that no three are collinear (points not on a single line). In an affine plane, two lines are called ''parallel'' if they are equal or disjoint. Using this definition, Playfair's axiom above can be replaced by: * Given a point and a line, there is a unique line which contains the point and is parallel to the line. Parallelism is an equivalence relation on the lines of an affine plane. Since no concepts other than those involving the relationship between points and lines are involved in the axioms, an affine plane is an object of study belonging to incidence geometry. They are non-degenerate linear spaces satisfying Playfair's axiom. The familiar Euclidean p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Power
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: , and are prime powers, while , and are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, … . The prime powers are those positive integers that are divisible by exactly one prime number; in particular, the number 1 is not a prime power. Prime powers are also called primary numbers, as in the primary decomposition. Properties Algebraic properties Prime powers are powers of prime numbers. Every prime power (except powers of 2 greater than 4) has a primitive root; thus the multiplicative group of integers modulo ''p''''n'' (that is, the group of units of the ri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Projective Plane
In mathematics, a projective plane is a geometric structure that extends the concept of a plane (geometry), plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus ''any'' two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in Perspective (graphical)#Renaissance, perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by , RP2, or P2(R), among other notations. There are many other projective planes, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
William Wootters
William "Bill" Kent Wootters is an American theoretical physicist, and one of the founders of the field of quantum information theory. In a 1982 joint paper with Wojciech H. Zurek, Wootters proved the no-cloning theorem, at the same time as Dennis Dieks, and independently of James L. Park who had formulated the no-cloning theorem in 1970. He is known for his contributions to the theory of quantum entanglement including quantitative measures of it, entanglement-assisted communication (notably quantum teleportation, discovered by Wootters and collaborators in 1993) and entanglement distillation. The term ''qubit,'' denoting the basic unit of quantum information, originated in a conversation between Wootters and Benjamin Schumacher in 1992. He earned a B.S. from Stanford University in 1973, and his Ph.D. from the University of Texas at Austin in 1980. His thesis was titled ''The Acquisition of Information from Quantum Measurements,'' and Linda Reichl was his doctoral advisor, wh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer Factorization
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, is a composite number because , but is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example . Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers , , , and so on, up to the square root of . For larger numbers, especially when using a computer, various more sophis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pauli Spin Matrices
In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () when used in connection with isospin symmetries. \begin \sigma_1 = \sigma_x &= \begin 0&1\\ 1&0 \end, \\ \sigma_2 = \sigma_y &= \begin 0& -i \\ i&0 \end, \\ \sigma_3 = \sigma_z &= \begin 1&0\\ 0&-1 \end. \\ \end These matrices are named after the physicist Wolfgang Pauli. In quantum mechanics, they occur in the Pauli equation, which takes into account the interaction of the spin of a particle with an external electromagnetic field. They also represent the interaction states of two polarization filters for horizontal/vertical polarization, 45 degree polarization (right/left), and circular polarization (right/left). Each Pauli matrix is Hermitian, and together with the iden ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eigenvectors
In linear algebra, an eigenvector ( ) or characteristic vector is a Vector (mathematics and physics), vector that has its direction (geometry), direction unchanged (or reversed) by a given linear map, linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scalar multiplication, scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative number, negative or complex number, complex number). Euclidean vector, Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation Rotation (mathematics), rotates, Scaling (geometry), stretches, or Shear mapping, shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with nei ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |