HOME





Multivalent Battery
Multivalent batteries are energy storage and delivery technologies (i.e., electro-chemical energy storage) that employ multivalent ions, e.g., Mg2+, Ca2+, Zn2+, Al3+ as the active charge carrier in the electrolytes as well as in the electrodes (anode and cathode). Multivalent batteries are generally pursued for the potentially greater capacity, owing to greater ion valency, as well as natural mineral abundance. Overview Multivalent ion batteries are considered post-Li battery systems that can be potential alternatives to incumbent Li-ion and emerging Lithium Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ... metal systems. Owing to their greater valency, they can provide greater energy density and storage capacity. Multivalent minerals are generally available in relatively great ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Energy Storage
Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an Accumulator (energy), accumulator or Battery (electricity), battery. Energy comes in multiple forms including radiation, chemical energy, chemical, gravitational potential energy, gravitational potential, Electric potential energy, electrical potential, electricity, elevated temperature, latent heat and kinetic energy, kinetic. Energy storage involves converting energy from forms that are difficult to store to more conveniently or economically storable forms. Some technologies provide short-term energy storage, while others can endure for much longer. Bulk energy storage is currently dominated by hydroelectric dams, both conventional as well as pumped. Grid energy storage is a collection of methods used for energy storage on a large scale within an electrical power grid. Common e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Charge Carrier
In solid state physics, a charge carrier is a particle or quasiparticle that is free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. In a conducting medium, an electric field can exert force on these free particles, causing a net motion of the particles through the medium; this is what constitutes an electric current. The electron and the proton are the elementary charge carriers, each carrying one elementary charge (''e''), of the same magnitude and opposite sign. In conductors In conducting mediums, particles serve to carry charge. In many metals, the charge carriers are electrons. One or two of the valence electrons from each atom are able to move about freely within the crystal structure of the metal. The free electrons are referred to as conduction electrons, and the cloud of free electrons is called a Fermi gas. Many metals have electron and hole bands. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electrodes
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or a gas). In electrochemical cells, electrodes are essential parts that can consist of a variety of materials (chemicals) depending on the type of cell. An electrode may be called either a cathode or anode according to the direction of the electric current, unrelated to the potential difference between electrodes. Michael Faraday coined the term "" in 1833; the word recalls the Greek ἤλεκτρον (, "amber") and ὁδός (, "path, way"). The electrophore, invented by Johan Wilcke in 1762, was an early version of an electrode used to study static electricity. Anode and cathode in electrochemical cells Electrodes are an essential part of any battery. The first electrochemical battery was devised by Alessandro Volta and was aptly named the Voltaic cell. This battery consisted of a stack of copper and zinc electrodes sep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lithium-ion Battery
A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. Li-ion batteries are characterized by higher specific energy, energy density, and energy efficiency and a longer cycle life and calendar life than other types of rechargeable batteries. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991; over the following 30 years, their volumetric energy density increased threefold while their cost dropped tenfold. In late 2024 global demand passed per year, while production capacity was more than twice that. The invention and commercialization of Li-ion batteries has had a large impact on technology, as recognized by the 2019 Nobel Prize in Chemistry. Li-ion batteries have enabled portable consumer electronics, laptop computers, cellular phones, and electric cars. Li-ion batteries also see signifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lithium Battery
Lithium battery may refer to: * Lithium metal battery, a non-rechargeable battery with lithium as an anode ** Lithium–air battery ** Lithium–iron disulfide battery ** Lithium–sulfur battery ** Nickel–lithium battery ** Rechargeable lithium metal battery, a rechargeable counterpart to the lithium metal battery * Lithium-ion battery A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. Li-ion batteries are characterized by higher specific energy, energ ..., a rechargeable battery in which lithium ions move from the negative electrode to the positive electrode during discharge and back when charging ** Aqueous lithium-ion battery ** Lithium-ion flow battery ** Lithium ion manganese oxide battery ** Lithium polymer battery ** Lithium–silicon battery ** Lithium-titanate battery ** Lithium vanadium phosphate battery ** Thin-film lithium-ion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rechargeable Battery
A rechargeable battery, storage battery, or secondary cell (formally a type of energy accumulator), is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or primary battery, which is supplied fully charged and discarded after use. It is composed of one or more electrochemical cells. The term "accumulator" is used as it accumulates and stores energy through a reversible electrochemical reaction. Rechargeable batteries are produced in many different shapes and sizes, ranging from button cells to megawatt systems connected to stabilize an electrical distribution network. Several different combinations of electrode materials and electrolytes are used, including lead–acid, zinc–air, nickel–cadmium (NiCd), nickel–metal hydride (NiMH), lithium-ion (Li-ion), lithium iron phosphate (LiFePO4), and lithium-ion polymer (Li-ion polymer). Rechargeable batteries typically initially cost more tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Magnesium Battery
Magnesium batteries are batteries that utilize magnesium cations as charge carriers and possibly in the anode in electrochemical cells. Both non-rechargeable primary cell and rechargeable secondary cell chemistries have been investigated. Magnesium primary cell batteries have been commercialised and have found use as reserve and general use batteries. Magnesium secondary cell batteries are an active research topic as a possible replacement or improvement over lithium-ion–based battery chemistries in certain applications. A significant advantage of magnesium cells is their use of a solid magnesium anode, offering energy density higher than lithium batteries. Insertion-type anodes ('magnesium ion') have been researched. Primary cells Primary magnesium cells have been developed since the early 20th century. In the anode, they take advantage of the low stability and high energy of magnesium metal, whose bonding is weaker by more than 250 kJ/mol compared to iron and most other tra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calcium Battery
Calcium (ion) batteries are energy storage and delivery technologies (i.e., electro–chemical energy storage) that employ calcium ions (cations), Ca2+, as the active charge carrier. Calcium (ion) batteries remain an active area of research, with studies and work persisting in the discovery and development of electrodes and electrolytes that enable stable, long-term battery operation. Calcium batteries are rapidly emerging as a recognized alternative to Li-ion technology due to their similar performance, significantly greater abundance, and lower cost. History Calcium batteries date to the 1960s, used as thermal batteries for military and space applications. The first example of an electrochemical cell was Ca//SOCl2 as a primary cell. Early examination of Ca2+ intercalation hosts proposed transition metal oxides and sulfides. The study of calcium batteries as well as calcium electro-chemistry continued. Research expanded owing to developments in effective Ca-metal redox activit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zinc–carbon Battery
A zinc–carbon battery (or carbon zinc battery in U.S. English) is the generic “heavy duty” disposable battery. It has been overtaken in recent times by the longer-lasting alkaline battery. A zinc–carbon battery is a dry cell that provides direct electric current from the electrochemical reaction between zinc (Zn) and manganese dioxide (MnO2) in the presence of an ammonium chloride (NH4Cl) electrolyte. It produces a voltage of about 1.5 volts between the zinc anode, which is typically constructed as a cylindrical container for the battery cell, and a carbon rod surrounded by a compound with a higher Standard electrode potential (positive polarity), known as the cathode, that collects the current from the manganese dioxide electrode. The name "zinc–carbon" is slightly misleading as it implies that carbon is acting as the oxidizing agent rather than the manganese dioxide. General-purpose batteries may use an acidic aqueous paste of ammonium chloride (NH4Cl) as electro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aluminium Battery
Different types of aluminium-based batteries have been investigated. Several are listed below: * Aluminium–air battery is a non-rechargeable battery. Aluminium–air batteries (Al–air batteries) produce electricity from the reaction of oxygen in the air with aluminium. They have one of the highest energy densities of all batteries, but they are not widely used because of problems with high anode cost and byproduct removal when using traditional electrolytes. * Aluminium-ion battery is a class of rechargeable battery in which aluminium ions provide energy. * Aluminium–chlorine battery was patented by United States Air Force in the 1970s and designed mostly for military applications. They use aluminium anodes and chlorine on graphite substrate cathodes. Elevated temperatures are required for these batteries to be operational. * Aluminium–sulfur battery was worked on by American researchers with great claims, although it seems that these are still far from mass production. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]