Multiferroics History Use Of Terms Magnetoelectric And Multiferroic
Multiferroics are defined as materials that exhibit more than one of the primary ferroic properties in the same phase: * ferromagnetism – a magnetisation that is switchable by an applied magnetic field * ferroelectricity – an electric polarisation that is switchable by an applied electric field * ferroelasticity – a deformation that is switchable by an applied stress While ferroelectric ferroelastics and ferromagnetic ferroelastics are formally multiferroics, these days the term is usually used to describe the '' magnetoelectric multiferroics'' that are simultaneously ferromagnetic and ferroelectric. Sometimes the definition is expanded to include nonprimary order parameters, such as antiferromagnetism or ferrimagnetism. In addition, other types of primary order, such as ferroic arrangements of magnetoelectric multipoles of which ferrotoroidicity is an example, have also been recently proposed. Besides scientific interest in their physical properties, multiferroics have p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ferroics
Ferroics is the generic name given to the study of ferromagnets, ferroelectrics, and ferroelastics. Overview The basis of ferroics is to understand the large changes in physical characteristics that occur over a very narrow temperature range. The changes in physical characteristics occur when phase transitions take place around some critical temperature value, normally denoted by T_c. Above this critical temperature, the crystal is in a nonferroic state and does not exhibit the physical characteristic of interest. Upon cooling the material down below T_c it undergoes a spontaneous phase transition. Such a phase transition typically results in only a small deviation from the nonferroic crystal structure, but in altering the shape of the unit cell the point symmetry of the material is reduced. This breaking of symmetry is physically what allows the formation of the ferroic phase. In ferroelectrics, upon lowering the temperature below T_c, a spontaneous dipole moment is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Barium Titanate
Barium titanate (BTO) is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric, pyroelectric, and piezoelectric ceramic material that exhibits the photorefractive effect. It is used in capacitors, electromechanical transducers and nonlinear optics. Structure The solid exists in one of four polymorphs depending on temperature. From high to low temperature, these crystal symmetries of the four polymorphs are cubic, tetragonal, orthorhombic and rhombohedral crystal structure. All of these phases exhibit the ferroelectric effect apart from the cubic phase. The high temperature cubic phase is easiest to describe, as it consists of regular corner-sharing octahedral TiO6 units that define a cube with O vertices and Ti-O-Ti edges. In the cubic phase, Ba2+ is located at the center of the cube, with a nominal coordination number of 12. Lower symmetry phases are stabili ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nature Materials
''Nature Materials'', is a peer-reviewed scientific journal published by Nature Publishing Group. It was launched in September 2002. Vincent Dusastre is the launching and current chief editor. Aims and scope ''Nature Materials'' is focused on all topics within the combined disciplines of '' materials science'' and ''engineering''. Topics published in the journal are presented from the view of the impact that materials research has on other scientific disciplines such as (for example) physics, chemistry, and biology. Coverage in this journal encompasses fundamental research and applications from synthesis to processing, and from structure to composition. Coverage also includes basic research and applications of properties and performance of materials. Materials are specifically described as "substances in the condensed states (liquid, solid, colloidal)", and which are "designed or manipulated for technological ends." Furthermore, ''Nature Materials'' functions as a forum for th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tunnel Magnetoresistance
Tunnel magnetoresistance (TMR) is a magnetoresistive effect that occurs in a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. If the insulating layer is thin enough (typically a few nanometres), electrons can tunnel from one ferromagnet into the other. Since this process is forbidden in classical physics, the tunnel magnetoresistance is a strictly quantum mechanical phenomenon. Magnetic tunnel junctions are manufactured in thin film technology. On an industrial scale the film deposition is done by magnetron sputter deposition; on a laboratory scale molecular beam epitaxy, pulsed laser deposition and electron beam physical vapor deposition are also utilized. The junctions are prepared by photolithography. Phenomenological description The direction of the two magnetizations of the ferromagnetic films can be switched individually by an external magnetic field. If the magnetizations are in a parallel orientation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spintronic
Spintronics (a portmanteau meaning spin transport electronics), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics. Spintronics fundamentally differs from traditional electronics in that, in addition to charge state, electron spins are exploited as a further degree of freedom, with implications in the efficiency of data storage and transfer. Spintronic systems are most often realised in dilute magnetic semiconductors (DMS) and Heusler alloys and are of particular interest in the field of quantum computing and neuromorphic computing. History Spintronics emerged from discoveries in the 1980s concerning spin-dependent electron transport phenomena in solid-state devices. This includes the observa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Piezomagnetism
Piezomagnetism is a phenomenon observed in some antiferromagnetic and ferrimagnetic crystals. It is characterized by a linear coupling between the system's magnetic polarization and mechanical strain. In a piezomagnetic material, one may induce a spontaneous magnetic moment by applying physical stress, or a physical deformation by applying a magnetic field. Piezomagnetism differs from the related property of magnetostriction; if an applied magnetic field is reversed in direction, the strain produced changes signs. Additionally, a non-zero piezomagnetic moment can be produced by mechanical strain ''alone'', at zero fields, which is not true of magnetostriction. According to IEEE: "Piezomagnetism is the linear magneto-mechanical effect analogous to the linear electromechanical effect of piezoelectricity Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and vari ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Piezoelectricity
Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word ''piezoelectricity'' means electricity resulting from pressure and latent heat. It is derived from the Greek word ; ''piezein'', which means to squeeze or press, and ''ēlektron'', which means amber, an ancient source of electric charge. The piezoelectric effect results from the linear electromechanical interaction between the mechanical and electrical states in crystalline materials with no inversion symmetry. The piezoelectric effect is a reversible process: materials exhibiting the piezoelectric effect also exhibit the reverse piezoelectric effect, the internal generation of a mechanical strain resulting from an applied electrical field. For example, lead zirconate titanate crystals will generate measurable piezoelectricity when ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
T-symmetry
T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal, : T: t \mapsto -t. Since the second law of thermodynamics states that entropy increases as time flows toward the future, in general, the macroscopic universe does not show symmetry under time reversal. In other words, time is said to be non-symmetric, or asymmetric, except for special equilibrium states when the second law of thermodynamics predicts the time symmetry to hold. However, quantum noninvasive measurements are predicted to violate time symmetry even in equilibrium, contrary to their classical counterparts, although this has not yet been experimentally confirmed. Time ''asymmetries'' generally are caused by one of three categories: # intrinsic to the dynamic physical law (e.g., for the weak force) # due to the initial conditions of the universe (e.g., for the second law of thermodynamics) # due to measurements (e.g., for the noninvasive measu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parity (physics)
In physics, a parity transformation (also called parity inversion) is the flip in the sign of ''one'' spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection): :\mathbf: \beginx\\y\\z\end \mapsto \begin-x\\-y\\-z\end. It can also be thought of as a test for chirality of a physical phenomenon, in that a parity inversion transforms a phenomenon into its mirror image. All fundamental interactions of elementary particles, with the exception of the weak interaction, are symmetric under parity. The weak interaction is chiral and thus provides a means for probing chirality in physics. In interactions that are symmetric under parity, such as electromagnetism in atomic and molecular physics, parity serves as a powerful controlling principle underlying quantum transitions. A matrix representation of P (in any number of dimensions) has determinant equal to −1, and hence is distinct from a rotati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bismuth Ferrite
Bismuth ferrite (BiFeO3, also commonly referred to as BFO in materials science) is an inorganic chemical compound with perovskite structure and one of the most promising multiferroic materials. The room-temperature phase of BiFeO3 is classed as rhombohedral belonging to the space group R3c. It is synthesized in bulk and thin film form and both its antiferromagnetic (G type ordering) Néel temperature (approximately 653 K) and ferroelectric Curie temperature are well above room temperature (approximately 1100K). Ferroelectric polarization occurs along the pseudocubic direction (\langle 111\rangle_c) with a magnitude of 90–95 μC/cm2. Sample Preparation Bismuth ferrite is not a naturally occurring mineral and several synthesis routes to obtain the compound have been developed. Solid state synthesis In the solid state reaction method bismuth oxide (Bi2O3) and iron oxide (Fe2O3) in a 1:1 mole ratio are mixed with a mortar or by ball milling and then fired at ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relaxor Ferroelectric
Relaxor ferroelectrics are ferroelectric materials that exhibit high electrostriction. , although they have been studied for over fifty years, the mechanism for this effect is still not completely understood, and is the subject of continuing research. Examples of relaxor ferroelectrics include: * lead magnesium niobate (PMN) * lead magnesium niobate-lead titanate (PMN-PT) * lead lanthanum zirconate titanate (PLZT) * lead scandium niobate Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, le ... (PSN) *Barium Titanium-Bismuth Zinc Niobium Tantalum (BT-BZNT) *Barium Titanium-Barium Strontium Titanium (BT-BST) Applications Relaxor Ferroelectric materials find application in high efficiency energy storage and conversion as they have high dielectric constants, orders-of-magnitude highe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Piezoresponse Force Microscopy
Piezoresponse force microscopy (PFM) is a variant of atomic force microscopy (AFM) that allows imaging and manipulation of piezoelectric/ferroelectric materials domains. This is achieved by bringing a sharp conductive probe into contact with a ferroelectric surface (or piezoelectric material) and applying an alternating current (AC) bias to the probe tip in order to excite deformation of the sample through the converse piezoelectric effect (CPE). The resulting deflection of the probe cantilever is detected through standard split photodiode detector methods and then demodulated by use of a lock-in amplifier (LiA). In this way topography and ferroelectric domains can be imaged simultaneously with high resolution. Basic principles General overview Piezoresponse force microscopy is a technique which since its inception and first implementation by Güthner and Dransfeld has steadily attracted more and more interest. This is due in large part to the many benefits and few drawbacks tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |